

Smart Innovation, Systems
and Technologies 19

Editors-in-Chief

Prof. Robert J. Howlett
KES International
PO Box 2115
Shoreham-by-sea
BN43 9AF
UK
E-mail: rjhowlett@kesinternational.org

Dr. Lakhmi C. Jain
Adjunct Professor
University of Canberra
ACT 2601
Australia
and
University of South Australia
Adelaide
South Australia SA 5095
Australia
E-mail: Lakhmi.jain@unisa.edu.au

For further volumes:
http://www.springer.com/series/8767

Bruno Apolloni, Simone Bassis, Anna Esposito,
and Francesco Carlo Morabito (Eds.)

Neural Nets and Surroundings

22nd Italian Workshop on Neural Nets,
WIRN 2012, May 17–19, Vietri sul Mare,
Salerno, Italy

ABC

Editors
Prof. Bruno Apolloni
Department of Computer Science
University of Milano
Milano
Italy

Dr. Simone Bassis
Department of Computer Science
University of Milano
Milano
Italy

Prof. Anna Esposito
Department of Psychology
Second University of Naples
Caserta
Italy

and

Institute for Advanced Scientific
Studies (IIASS)
Vietri sul Mare Salerno
Italy

Prof. Francesco Carlo Morabito
Department of Mechanics and Materials
Mediterranea University of Reggio Calabria
Reggio Calabria
Italy

ISSN 2190-3018 e-ISSN 2190-3026
ISBN 978-3-642-35466-3 e-ISBN 978-3-642-35467-0
DOI 10.1007/978-3-642-35467-0
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012953656

c© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews
or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a
computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts
thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its cur-
rent version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume collects a selection of contributions which has been presented at the 22nd
Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for
Neural Networks (SIREN). The conference was held in Italy, Vietri sul Mare (Salerno),
during May 17–19, 2012. The annual meeting of SIREN is sponsored by International
Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE
Computational Intelligence Society (CIS).

The workshop, and thus this book, is organized in three main components, two spe-
cial sessions and a group of regular sessions featuring different aspects and point of
views of artificial neural networks and natural intelligence, also including applications
of present compelling interest.

More than 60 papers were presented at the Workshop, and most of them are reported
here. The review process has been carried out in two steps, one before and one after
the workshop in order to meet Publisher’s requirements. The selection of the papers
was made through peer-review process, where each submission was evaluated by at
least two reviewers. The submitted papers were authored by peer scholars from differ-
ent countries (the Italian component was anyway preponderant). The acceptance rate
is thus high also because most of the attendees are involved in SIREN research and
organization activities for more than 20 years. In addition to regular papers, the techni-
cal program featured keynote plenary lectures by some worldwide renowned scientist
(Soo Young Lee, South Korea; Ganesh K. Venayagamoorthy,USA; Jacek Zurada, USA;
Günther Palm, Germany; Alessandro Vinciarelli, UK; Danilo Mandic, UK). One of the
two special sessions was supported by the EU-sponsored COST Action 2102 that closed
his work on February 2011 even though the Members of the Action are still networking
and collaborating in scientific activities.

The first Special Session explored the new frontiers and challenges in Smart Grid re-
search and proposed a proficient discussion table for scientists joining the WIRN con-
ference, whose expertise typically cover the research fields addressed in Smart Grid
technology, as electrical and electronic engineering, computational intelligence, digital
signal processing and telecommunications. The Session included two invited contribu-
tions and seven regular ones. The Session was particularly relevant because it introduced

VI Preface

some aspects of neural network applications not commonly known at the community
in a field of growing interest.

The second Special Session was titled Computational Intelligence in Emotional or
Affective Systems and was given in honour of John Taylor, the Editor-in-chief of the
journal Neural Networks recently died. The Session featured two keynote lectures and
10 regular contributions. Computational Intelligence (CI) methods have shown great
capabilities in modelling, prediction, and recognition tasks and a mature degree of un-
derstanding has been achieved in many application areas, in particular in complex mul-
timodal systems supporting human-machine or human-human interaction. At the same
time, the emotional issue has recently gained increasing attention in such complex sys-
tems due to its relevance in most common human tasks (like cognitive processes, per-
ception, learning, communication and even “rational” decision-making) and therefore is
highly relevant for the goal of human-like interaction with machines. The real challenge
is taking advantage of the emotional characterization of humans to make the computer
interfacing with them more natural and therefore useful. The scope of the session was
to assess to what extent and how sophisticated computational intelligence tools devel-
oped so far might support the multidisciplinary research on the characterization of an
appropriate system reaction to human emotions and expression in interactive scenarios.

We would like to thank all of the special sessions organizers, namely: Stefano Squar-
tini, Rosario Carbone, Michele Scarpiniti, Francesco Piazza, Aurelio Uncini, Anna
Esposito, Günther Palm.

The organization of an International Conference gathers for the efforts of several
people involved. We would like to express our gratitude to everyone that has cooperate
to the organization, by offering their commitment, energy and spare time to make this
event a successful one.

May 2012 Bruno Apolloni
Simone Bassis
Anna Esposito

Francesco Carlo Morabito

Organization

WIRN 2012 is organized by the Italian Society of Neural Networks (SIREN) in co-
operation with the International Institute for Advanced Scientific Studies (IIASS) of
Vietri S/M (Italy).

Executive Committee

Bruno Apolloni University of Milano, Italy
Simone Bassis University of Milano, Italy
Anna Esposito University Federico II of Napoli, Italy
Francesco Masulli University of Genova, Italy
Francesco Carlo Morabito University Mediterranea of Reggio Calabria,

Italy
Francesco Palmieri Second University of Napoli, Italy
Eros Pasero Polytechnic of Torino, Italy
Stefano Squartini Polytechnic University of Marche, Italy
Roberto Tagliaferri University of Salerno, Italy
Aurelio Uncini University “La Sapienza” of Roma, Italy
Salvatore Vitabile University of Palermo, Italy

Program Committee

Conference Chair

Francesco Carlo Morabito University Mediterranea of Reggio Calabria,
Italy

Conference Co-Chair

Simone Bassis University of Milan, Italy

Program Chair

Bruno Apolloni University of Milan, Italy

VIII Organization

Organizing Chair

Anna Esposito Second University of Napoli, Italy

Special Tracks

Anna Esposito Second University of Napoli, Italy
Stefano Squartini Polytechnic University of Marche, Italy

Referees

G. Albano
B. Apolloni
S. Bassis
A. Borghese
F. Camastra
W. Capraro
R. Carbone
M. Cardin
A. Ciaramella
C. Claudio
D. Comminiello
V. d’Amato
R. de Rosa
F. Epifania
A. M. Esposito
A. Esposito
M. Faundez-Zanuy
A. Filisetti
M. Frasca

S. Funari
C. Furlanello
G. L. Galliani
S. Giove
G. Ippoliti
F. La Foresta
G. Lombardi
M. Lucchese
D. Malchiodi
U. Maniscalco
C. Marco
F. Masulli
L. Menconi
A. Micheli
F. C. Morabito
G. Palm
F. Palmieri
E. Pasero
F. Piazza

M. Re
A. Rizzi
P. M. Ros
S. Rovetta
A. Rozza
M. Russolillo
S. Scarpetta
M. Scarpiniti
R. Serra
G. Spagnuolo
S. Squartini
A. Staiano
A. Uncini
G. Valentini
L. Valerio
M. Villani
S. Vitabile
Q. Wei
A. Zippo

Sponsoring Institutions

International Institute for Advanced Scientific Studies (IIASS) of Vietri S/M (Italy)
Department of Psychology, Second University of Napoli (Italy)
Provincia di Salerno (Italy)
Comune di Vietri sul Mare, Salerno (Italy)

Contents

Part I: Algorithms

Probability Learning and Soft Quantization in Bayesian Factor Graphs 3
Francesco A.N. Palmieri, Alberto Cavallo

Rival-Penalized Competitive Clustering: A Study and Comparison 11
Alberto Borghese, Wiliam Capraro

An Interpretation of the Boundary Movement Method
for Imbalanced Dataset Classification Based on Data Quality 21
Dario Malchiodi

Genetic Algorithm Modeling with GPU Parallel Computing Technology . . . 29
Stefano Cavuoti, Mauro Garofalo, Massimo Brescia, Antonio Pescape’,
Giuseppe Longo, Giorgio Ventre

An Experimental Evaluation of Reservoir Computation for Ambient
Assisted Living . 41
Davide Bacciu, Stefano Chessa, Claudio Gallicchio, Alessio Micheli,
Paolo Barsocchi

Balancing Recall and Precision in Stock Market Predictors Using
Support Vector Machines . 51
Marco Lippi, Lorenzo Menconi, Marco Gori

Measures of Brain Connectivity through Permutation Entropy
in Epileptic Disorders . 59
Domenico Labate, Giuseppina Inuso, Gianluigi Occhiuto, Fabio La Foresta,
Francesco C. Morabito

A New System for Automatic Recognition of Italian Sign Language 69
Marco Fagiani, Emanuele Principi, Stefano Squartini, Francesco Piazza

X Contents

Fall Detection Using an Ensemble of Learning Machines 81
Simon Bulotta, Hassan Mahmoud, Francesco Masulli, Ernesto Palummeri,
Stefano Rovetta

Part II: Signal Processing

PM10 Forecasting Using Kernel Adaptive Filtering: An Italian Case
Study . 93
Simone Scardapane, Danilo Comminiello, Michele Scarpiniti,
Raffaele Parisi, Aurelio Uncini

A Collaborative Filter Approach to Adaptive Noise Cancellation 101
Michele Scarpiniti, Danilo Comminiello, Raffaele Parisi, Aurelio Uncini

Waveform Variation of the Explosion-Quakes as a Function
of the Eruptive Activity at Stromboli Volcano . 111
Antonietta M. Esposito, Luca D’Auria, Flora Giudicepietro, Marcello Martini

Artificial Neural Network (ANN) Morphological Classification of
Magnetic Resonance Imaging in Multiple Sclerosis . 121
Alessia Bramanti, Lilla Bonanno, Placido Bramanti, Pietro Lanzafame

Neural Moving Object Detection by Pan-Tilt-Zoom Cameras 129
Alessio Ferone, Lucia Maddalena, Alfredo Petrosino

Control of Coffee Grinding with General Regression Neural Networks 139
Luca Mesin, Diego Alberto, Eros Pasero

Defects Detection in Pistachio Nuts Using Artificial Neural Networks 147
Paolo Motto Ros, Eros Pasero

Part III: Applications

LVQ-Based Hand Gesture Recognition Using a Data Glove 159
Francesco Camastra, Domenico De Felice

Investigation of Single Nucleotide Polymorphisms Associated to Familial
Combined Hyperlipidemia with Random Forests . 169
Antonino Staiano, Maria Donata Di Taranto, Elena Bloise,
Maria Nicoletta D’Agostino, Antonietta D’Angelo, Gennaro Marotta,
Marco Gentile, Fabrizio Jossa, Arcangelo Iannuzzi, Paolo Rubba,
Giuliana Fortunato

A Neural Procedure for Gene Function Prediction . 179
Marco Frasca, Alberto Bertoni, Andrea Sion

Handwritten Digits Recognition by Bio-inspired Hierarchical Networks 189
Antonio G. Zippo, Giuliana Gelsomino, Sara Nencini, Gabriele E.M. Biella

Contents XI

Forecasting Net Migration by Functional Demographic Model 201
Valeria D’Amato, Gabriella Piscopo, Maria Russolillo

Simulation Framework in Fertility Projections . 209
Valeria D’Amato, Gabriella Piscopo, Maria Russolillo

Building a Global Performance Indicator to Evaluate Academic Activity
Using Fuzzy Measures . 217
Marta Cardin, Marco Corazza, Stefania Funari, Silvio Giove

Testing the Weak Form Market Efficiency: Empirical Evidence from the
Italian Stock Exchange . 227
Giuseppina Albano, Michele La Rocca, Cira Perna

Part IV: Special Session on “Smart Grids: New Frontiers and
Challenges”

Real Time Techniques and Architectures for Maximizing the Power
Produced by a Photovoltaic Array . 239
Giovanni Petrone, Francisco Jose Sànchez Pacheco, Giovanni Spagnuolo

Sustainable Energy Microsystems for a Smart Grid . 259
Maria Carmen Falvo, Luigi Martirano, Danilo Sbordone

SVM Methods for Optimal Management of a Virtual Power Plant 271
Emanuele Crisostomi, Mauro Tucci, Marco Raugi

Active Power Losses Constrained Optimization in Smart Grids by
Genetic Algorithms . 279
Gian Luca Storti, Francesca Possemato, Maurizio Paschero,
Silvio Alessandroni, Antonello Rizzi, Fabio Massimo Frattale Mascioli

Solar Irradiation Forecasting for PV Systems by Fully Tuned Minimal
RBF Neural Networks . 289
Lucio Ciabattoni, Gianluca Ippoliti, Sauro Longhi, Matteo Pirro,
Matteo Cavalletti

Ontology-Based Device Configuration and Management
for Smart Homes . 301
Michele Nucci, Marco Grassi, Francesco Piazza

A Comparison between Different Optimization Techniques
for Energy Scheduling in Smart Home Environment . 311
Francesco De Angelis, Matteo Boaro, Danilo Fuselli, Stefano Squartini,
Francesco Piazza

XII Contents

Part V: Special Session on “Computational Intelligence
in Emotional or Affective Systems”

Towards Emotion Recognition in Human Computer Interaction 323
Günther Palm, Michael Glodek

Towards Causal Modeling of Human Behavior . 337
Matteo Campo, Anna Polychroniou, Hugues Salamin, Maurizio Filippone,
Alessandro Vinciarelli

How Social Signal Processing (SSP) Can Help Assessment of Bonding
Phenomena In Developmental Psychology? . 345
Emilie Delaherche, Sofiane Boucenna, Mohamed Chetouani, David Cohen

Emotion and Complex Tasks: Writing Abilities in Young Graders 357
Michaël Fartoukh, Lucile Chanquoy, Annie Piolat

A Preliminary Study of Online Drawings and Dementia Diagnose 367
Marcos Faundez-Zanuy, Enric Sesa-Nogueras, Josep Roure-Alcobe,
Josep Garre-Olmo, Jiri Mekyska, Karmele Lopez-de-Ipiña, Anna Esposito

Hand-Based Gender Recognition Using Biometric Dispersion Matcher 375
Xavier Font-Aragones, Marcos Faundez-Zanuy

Revisiting AVEC 2011 – An Information Fusion Architecture 385
Martin Schels, Michael Glodek, Friedhelm Schwenker, Günther Palm

Discriminating Human vs. Stylized Emotional Faces:
Recognition Accuracy in Young Children . 395
Anna Esposito, Maria Teresa Riviello, Vincenzo Capuano

Emotional Status Determination in HCI Interface for the Paralyzed 405
Rytis Maskeliunas, Vidas Raudonis, Paulius Lengvenis

Emoticons Signal Expertise in Technical Web Forums 415
Liliana Mamani Sanchez, Carl Vogel

Machine Learning and Soft Computing Methodologies
for Music Emotion Recognition . 427
Angelo Ciaramella, Giuseppe Vettigli

Homo-Machina Visual Metaphors, Representations
of Consciousness and Scientific Thinking . 437
Mauro Maldonato, Ilaria Anzoise

Author Index . 453

Part I

Algorithms

Probability Learning and Soft Quantization

in Bayesian Factor Graphs

Francesco A.N. Palmieri and Alberto Cavallo

Dipartimento di Ingegneria Industriale e dell’Informazione
Seconda Universitá di Napoli (SUN)

via Roma 29, 81031 Aversa (CE), Italy
{francesco.palmieri,alberto.cavallo}@unina2.it

Abstract. We focus on learning the probability matrix for discrete ran-
dom variables in factor graphs. We review the problem and its variational
approximation and, via entropic priors, we show that soft quantization
can be included in a probabilistically-consistent fashion in a factor graph
that learns the mutual relationship among the variables involved. The
framework is explained with reference the ”Tipper” example and the
results of a Matlab simulation are included.

Keywords: Machine Learning, Factor Graphs, Bayesian Methods.

1 Introduction

Probability propagation on graphs is a very promising emerging paradigm for
building intelligent signal processing systems [12]. Algorithms and applications
are under development in many areas of research that range from communication
and coding to signal processing and control. However, full use and development
of artificial intelligence systems that operate with probability propagation tech-
niques require refinements on a number of critical issues. Some of these are:
1. Propagation in graphs with cycles [1]; 2. Parameter learning [8]; 3. Graph-
structure learning [13]; 4. Propagation and learning in hybrid graphs with both
continuous and discrete variables; etc. In this paper we focus on learning the
probability matrix in discrete-variable factor graphs [7][6] pointing to a connec-
tion to variational learning [5][3][2][18][19]. We apply the idea to a generic block
where the whole probability matrix is learned from examples. Recent develop-
ment on inference based on entropic priors [15][14] allows the introduction of soft
quantization within the Bayesian graph framework much like in fuzzy logic [17].
Entropic priors allow to translate some of the successful heuristics typical of the
fuzzy framework, into a probabilistically-consistent Bayesian learning paradigm
on factor graphs. Soft logic formulated within standard probability theory [10]
coupled with belief propagating on factor graphs represents a very promising
framework to bring to a higher cognitive level many of the current signal pro-
cessing problems. In our formulation we use factor graphs in Forney’s normal

B. Apolloni et al. (Eds.): Neural Nets and Surroundings, SIST 19, pp. 3–10.
DOI: 10.1007/978-3-642-35467-0_1 c© Springer-Verlag Berlin Heidelberg 2013

4 F.A.N. Palmieri and A. Cavallo

form [11], because they are easier to handle in comparison to more traditional
Bayesian graphs [16].

In this paper we first review the problem of learning the probability matrix
pointing to a connection with variational message passing. Then we briefly in-
troduce soft quantization with entropic priors and finally we apply the ideas
to the well-known Tipper example. The results of a simulation show how this
framework implements a very natural dynamic merge of inference and learning.

2 Learning the Probability Matrix

Probabilistic inference in factor graphs via message propagation is a relatively
mature technique, at least in graphs with no cycles, when the conditional proba-
bility functions that make up the model are known [12]. A much harder problem
is learning the model parameters on line, i.e. performing inference and learning
at the same time. To focus on the specifics of this issue we start with the simplest
(non trivial) factor graph of Figure 1 that models N independent realizations
of two random variables X ∈ X = {ξ1, ..., ξd} and Y ∈ Y = {η1, ..., ηm}. The
variables are discrete and take values in the two alphabets X and Y and are
related via the unknown conditional probability matrix

P (Y |XΘ) =

⎛⎜⎜⎝
p(η1|ξ1) ... p(ηm|ξ1)
p(η1|ξ2) ... p(ηm|ξ2)

.
p(η1|ξd) ... p(ηm|ξd)

⎞⎟⎟⎠ = Θ =

⎛⎜⎜⎝
Θ11 ... Θ1m

Θ21 ... Θ2m

.
Θd1 ... Θdm

⎞⎟⎟⎠ , (1)

with 0 ≤ Θij ≤ 1, i = 1, ..., d, j = 1, ...,m;
∑m

j=1 Θij = 1, i = 1, ..., d. The
unknown parameters make up the matrix Θ ∈ T , where T denotes the set of all
d×m stochastic matrices. Since the structure of Figure 1 may be part of a more
complex network, we assume that information on X [n] and Y [n] is available in

Fig. 1. The factor graph for N independent realizations of (X[n], Y [n])

Soft Quantization and Learning 5

soft form via forward and backward distributions fX[n](x), bX[n](x), fY [n](y) and
bY [n](y), with x ∈ X and y ∈ Y. Also information about matrix Θ is carried by
forward and backward messages fΘ[n](θ) and bΘ[n](θ) which are matrix functions.
These messages are related to each other via marginalization as

fY [n](y) ∝
∫
θ∈T
∑

x∈X P (y|xθ)fX[n](x)fΘ[n](θ)dθ;

bX[n](x) ∝
∫
θ∈T
∑

y∈Y P (y|xθ)bY [n](y)fΘ[n](θ)dθ;
bΘ[n](θ) ∝

∑
x∈X
∑

y∈Y P (y|xθ)bY [n](y)fX[n](x).
As usual in factor graphs, the notation ∝ means that the expressions are distri-
butions except for proper normalization. The complete model is hybrid because
X [n] and Y [n] are discrete and Θ is continuous and multi-dimensional. In a
more compact matrix representation, forward and backward messages for X [n]
and Y [n] are the column vectors

fX[n] = (fX[n](ξ1), ..., fX[n](ξd))
T ; bX[n] = (bX[n](ξ1), ..., bX[n](ξd))

T ;
fY [n] = (fY [n](η1), ..., fY [n](ηm))T ; bY [n] = (bY [n](η1), ..., bY [n](ηm))T .

Therefore we can write
fY [n] ∝

∫
θ∈T θT fX[n]fΘ[n](θ)dθ = FT

θ[n]fX[n];

bX[n] ∝
∫
θ∈T θbY [n]fΘ[n](θ)dθ = Fθ[n]bY [n],

where Fθ[n] =
∫
θ∈T θfΘ[n](θ)dθ is the mean forward matrix for Θ[n]. The back-

ward message for Θ[n] is the matrix function

bΘ[n](θ) ∝ fTX[n]θbY [n] = fTX[n]

⎛⎜⎜⎝
θ11 ... θ1m
θ21 ... θ2m
.

θd1 ... θdm

⎞⎟⎟⎠bY [n]. (2)

Messages for Θ[n] and Θ′[n] in the other branches are formally the result of
the product rule fΘ[n](θ) ∝ fΘ′[n](θ)bΘ′[n−1](θ); bΘ′[n](θ) ∝ bΘ[n](θ)bΘ′[n−1](θ);
fΘ′[n](θ) ∝ bΘ[n+1](θ)fΘ′ [n+1](θ). Each message is a product of the type

μΘ(θ) ∝
∏
l

fTX[l]

⎛⎜⎜⎝
θ11 ... θ1m
θ21 ... θ2m
.

θd1 ... θdm

⎞⎟⎟⎠bY [l] =
∏
l

d∑
i=1

m∑
j=1

bY [l](ηj)fX[l](ξi)θij (3)

If variables X [n] and Y [n] of block n are instantiated, i.e. forward and backward
messages are delta functions, fX[n](x) = δ(x−ξi), bY [n](x) = δ(y−ηj), backward
information from block n is simply bΘ[n](θ) ∝ θij . If also all variables from all n
are instantiated, information exchanged among the blocks (except possibly for
the prior on Θ) are exactly products of Dirichlet distributions

μΘ(θ) ∝
d∏

i=1

m∏
j=1

θ
nij

ij ∝
d∏

i=1

Dir(θi1, ..., θim;ni1 + 1, ..., nim + 1), (4)

where nij are the integer numbers that represent the cumulative counts of the
occurrences of pair (i, j) (hard scores). Unfortunately, in the general case we are

6 F.A.N. Palmieri and A. Cavallo

interested in with forward and backward messages carrying soft information, ex-
pression (3) becomes intractable. Hence we resort to a variational approximation
[5][3][18] for bΘ[n](θ) that gives

bVΘ[n](θ) ∝ e
∑d

i=1

∑m
j=1 bY [n](ηj)fX[n](ξi) log θij =

∏d
i=1

∏m
j=1 θ

bY [n](ηj)fX[n](ξi)

ij

∝
∏d

i=1 Dir(θi1, ..., θim; fX[n](ξi)bY [n](η1) + 1, ..., fX[n](ξi)bY [n](ηm) + 1),
(5)

which is again the product of d Dirichlet distributions. This is particularly in-
teresting because the Dirichlet distribution, sometimes used as an assumption
[7][19], is exactly the variational approximation. Assuming that also the prior
distribution πΘ is a product of Dirichlet functions

πΘ ∝
∏d

i=1 Dir(θi1, ..., θim;αi1 + 1, ..., αim + 1).
A generic message in the upper branches has the form

μΘ ∝
∏d

i=1 Dir(θi1, ..., θim;
αi1 +

∑
l fX[l](ξi)bY [l](η1) + 1, ..., αim +

∑
l fX[l](ξi)bY [l](ηm) + 1).

(6)

A priori knowledge about the rule that mapsX into Y can also be easily included
in the coefficients of πΘ. The exponential form for the variational approximation
suggests that matrix variables Θ[n] and Θ′[n] could be replaced with soft score
matrix variablesO[n] andO′[n]. Backward message from block n becomes matrix
bO[n] = fX[n]b

T
Y [n]. Also all messages in the upper branches become d ×m ma-

trices with combination rules fO[n] = fO′[n] + bO′[n−1]; bO′[n] = bO[n] + bO′[n−1];
fO′[n] = bO[n+1] + fO′[n+1]. Forward and backward messages for Y [n] and X [n]
are respectively fY [n] ∝ FT

O[n]fX[n]; bX[n] ∝ FO[n]bY [n],, where FO[n] is the row-
normalized version of fO[n]. Note that these propagation rules represent the
learning steps for Θ as inference and learning happen at the same time. Recall
that the various stages in the graph represent time-unfolded versions of the same
block. Mode details and proofs will be reported in a longer paper.

3 Soft Quantization

Manipulation of discrete quantities in machine learning, also when the problem
involves continuous variables, may be particularly handy, because a priori qual-
itative information can be more easily injected into the system. Fuzzy methods
[17] have shown great success in merging soft knowledge with hard functions
especially in control [9]. In [15] we have shown how the use entropic priors in the
Bayesian framework allowing the introduction of soft membership information
in a way that is consistent within standard probability theory. This is a cru-
cial step to allow soft quantization and coherent use of probability propagation
for inference and learning in systems that contain both continuous and discrete
variables.

Soft Quantization and Learning 7

Figure 2 shows a quantization scheme for a continuous variable Sa. All the like-
lihoods are triangular, complementary and centered on the M nodes ξ1, ..., ξM .
Denoting the triangular function on a, b, c with Λ(sa; a, b, c), the M pdfs are

{ 2
ξ2−ξ1

Λ(sa; ξ1, ξ1, ξ2),
2

ξ3−ξ1
Λ(sa; ξ1, ξ2, ξ3),

..., 2
ξM−ξM−2

Λ(sa; ξM−2, ξM−1, ξM), 2
ξM−ξM−1

Λ(sa; ξM−1, ξM , ξM)}, (7)

and are shown in Figure 2(a). The differential entropy [4] of Λ(sa; a, b, c) is eas-
ily computed to be h(Sa) = 1

2 + log c−a
2 . With entropic priors πi ∝ eh(Sa|i)

[15], the prior-likelihood products, become equivalent to a set of functions
with same height as in Figure 2(b). We recall that entropic priors are the
distribution that maximize the joint entropy H(Sa, S) for fixed likelihoods
(pSa(sa|1), ..., pSa(sa|M)) [15]. The node distribution can be chosen according
to the data points density, but the complementarity of the likelihoods guaratees
that no information is lost after soft quantization. Figure 2(b) shows also how
this kind of soft quantization can be drawn as a generative factor graph model
that can be inserted into a larger factor graph. The backward message for Sa is
a data point bSa(sa) = δ(sa − s0). The backward message for S1 in vector nota-
tion is bS1 = (pSa(s0|1),, pSa(s0|M))T that after combination with entropic
priors becomes fS2 = (pSa(s0|1)π1,, pSa(s0|M)πM)T . The soft quantization
model satisfies a property of perfect recostruction because if bS2 = bS1 , we
have fS1 = fS2 and fSa(sa) = δ(sa − fTS1(ξ1, ..., ξM)T) = δ(sa − s0) (lossless
dequantization). More details about soft quantization with entropic priors will
be reported in a longer paper elsewhere.

Fig. 2. Soft quantization on nodes {ξ1, ..., ξM}. (a) The triangular likelihoods; (b) The
entropic priors-likelihoods products.

8 F.A.N. Palmieri and A. Cavallo

4 The Tipper Example

In this paper we report some experiments with the variational learning rules of
Section 2 and with the soft quantization scheme of Section 3 on the well-known
”Tipper” example. In this problems there are three continuous variables: Sa

(Service), Fa (Food) and Ta (Tip). The Tipper example, often used as a teaching
example in control classes (there is a Matlab demo available in the Fuzzy Control
Toolbox), is a typical case of mapping between two input variables (Service
and Food) and a final one (Tip). In the fuzzy framework is also very easy to
include soft rules and various design constraints. Our objective is here to traslate
this typical approach into a probabilistically-consistent Bayesian framework. The
underlying factor graphs shown in Figure 4, in which messages travel back and
forth, allows simultaneous inference and learning with inputs and outputs that
become essentially indistinguishable.

Even though a priori soft-logic rules can be easily included as contraints in the
prior block πΘ, we have assumed here no prior knowledge about the variables
Sa, Fa and Ta. We have simply presented 50 realizations of the triplet as fSa , fFa

and fTa and let the system learn (simulations with combinations of soft rules and
examples will be reported elsewhere). The triplets were obtained from a blind
run of the Matlab demo. Forward and backward messages carry information in
various parts of the system and inferences can also be made backward on Service
and/or Food from Tip.

The graph structure assumes that variables Service and Food are mutually
independent and that the N = 50 realizations are also statistically indepen-
dent. The three analog variables Sa, Fa and Ta are soft quantized from ranges
[0 − 10][0− 10][5− 25] with M = 6 uniformly spaced nodes each into the three
discrete variables S, F and T . Entropic priors are imposed in πS , πF and πT .
The 36× 6 matrix of conditional probabilities P (T |SFΘ) is learned via message
propagations with the variational algorithm described in Section 2. The simula-
tions let the messages propagate 300 steps which is enough to cover the graph
diameter. The graph is clearly a tree and convergence is guaranteed. Figure 4
shows the comparison of forward and backward information at each stage n. The
thre plots show the comparison of the actual value of each variable, as carried by
the backward input message, with the value provided by the rest of the system,
as carried by the forward output message that uses all the other inputs after
learning and propagation. Note that learning and inference is all done at the
same time since information about the parameter θ are also carried by travelling
messages. The simulation is self-contained and implements our best use of the
data because the inference, say on Ta[n], is based on all the examples except the
one on Ta[n]. This is because fΘ[n] does not contain information coming from
bΘ[n]. Hence each stage n uses a slightly different estimate for P (T |SFΘ) be-
cause the nth examples is automatically excluded. Therefore in inferring Ta[n],
values of Sa[n] and Fa[n] are used for inference, but not for learning. The same
considerations apply to inferences on Sa[n] and Fa[n].

Soft Quantization and Learning 9

Fig. 3. The factor graph for the Tipper example

0 10 20 30 40 50
0

5

10

S
a

0 10 20 30 40 50
0

5

10

F
a

0 10 20 30 40 50
10

15

20

25

T
a

Fig. 4. Comparison of forward (inference) (*) and backward (true) (o) values for the
three variables in the Tipper example

10 F.A.N. Palmieri and A. Cavallo

Conclusions

In this work we have reported partial results for a successful Bayesian paradigm
that implements via message propagation on a factor graph simultanaous infer-
ence and learning. By means of an example, we have also proposed a quanti-
zation scheme, that via the introduction of entropic priors, allows us to build
a probabilistically-consistent graph that can adapted with belief propagation.
More work will be devoted to further understanding of the adaptation rules and
on the inclusion of soft-logic contraints.

References

1. Graphical models emerge. new connections betweeen machine learning and signal
processing. Signal Processing Magazine, 27(6) (2010)

2. Beal, M.J.: Variational algorithms for approximate bayesian inference. Ph.D. thesis,
University of London (2003)

3. Beal, M.J., Ghahramani, Z.: Variational bayesian learning of directed graphical
models with hidden variables. Bayesian Analysis 1, 1–44 (2004)

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley (2006)
5. Dauwels, J.: On variational message passing in factor graphs. In: ISIT2007, Nice,

France, June 24-June 29 (2007)
6. Ghahramani, Z.: Unsupervised Learning. Springer (2004)
7. Heckerman, D.: A tutorial on learning with bayesian networks. Tech. Rep. MSR-

TR-95-06, Microsoft Research (1996); March 1995 (Revised November 1996)
8. Dauwels, J., Eckford, A., Loeliger, S.K., Expectation, H.A.: xpectation maximiza-

tion as message passing–part i: Principles and gaussian messages. arXiv:0910, 1–14
(2009); Submitted to IEEE Tr. on Information Theory

9. Jantzen, J.: Foundations of Fuzzy Control. Wiley (2007)
10. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University

Press (2003)
11. Loeliger, H.A.: An introduction to factor graphs. IEEE Signal Processing Maga-

zine 21(1), 28–41 (2004)
12. Loeliger, H.A., Dauwels, J., Hu, J., Korl, S., Ping, L., Kschischang, F.: The factor

graph approach to model-based signal processing. Proceedings of the IEEE 95(6),
1295–1322 (2007)

13. Choi, M.J., Tan, V.Y.F., Anandkumar, A., Willsky, A.S.: Learning latent tree
graphical models. Journal of Machine Learning Research 12, 1771–1812 (2011)

14. Palmieri, F.A.N., Ciuonzo, D.: Entropic priors for short-term stochastic process
classification. In: 14th Int. Conf. on Information Fusion, Chicago, IL (2011)

15. Palmieri, F.A.N., Ciuonzo, D.: Objective priors from maximum entropy in data
classification. In: Information Fusion (2012), doi:10.1016/j.inffus.2012.01.012

16. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

17. Novak, V., Perfilieva, I., Mockor, J.: Mathematical Principles of Fuzzy Logic.
Kluwer Academic Press (1999)

18. Winn, J., Bishop, C.M.: Variational message passing. Journal of Machine Learning
Research 6, 661–694 (2005)

19. Winn, J.M.: Variational message passing and its applications. Ph.D. thesis, Uni-
versity of Cambridge (2004)

Rival-Penalized Competitive Clustering: A Study
and Comparison

Alberto Borghese and Wiliam Capraro

Applied Intelligent Systems Laboratory, Dept. of Comupter Science, University of Milano
borghese@di.unimi.it, wiliam.capraro@studenti.unimi.it

Abstract. A major recurring problem in exploratory phases of data mining is
the task of finding the number of clusters in a dataset. In this paper we illustrate a
variant of the competitive clustering method which introduces a rival penalization
mechanism, and show how it can be used to solve such problem. Additionally,
we present some tests aimed at comparing the performance of our rival-penalized
technique with other classical procedures.

1 Introduction

The term central clustering refers to a family of clustering algorithms that are based
on moving a set of points, referred to as prototypes, inside the data space until their
position minimizes a certain cost function, representing a measure of the goodness by
which the prototypes represent the data points.

In the literature, approaches based on soft-clustering, like fuzzy c-means [14],
Neural-Gas [13,4] or Self-Organizing Maps (SOM) [6,16], and competitive learning
[5,15,12], have been proposed to partition a given dataset into a predefined number of
clusters, each one represented by a prototype usually corresponding to the cluster cen-
troid. All these algorithms suffer from several issues, most notably, the optimal value of
the cost function is rarely reached. Only stochastic optimization [10], that is extremely
costly, or a careful initialization of the prototypes allow escaping local minima. Al-
though a few attempts have been proposed to derive a robust initialization (e.g. [11]),
there seem to be no universal and reliable way to proceed, and some prototypes typically
get stuck during the clustering process. These prototypes are referred to as “dead units”
[13] and affect the proper operation of the algorithm and the quality of the result. As a
consequence, the general approach is to repeat the clusterization process several times
with different, random initializations of the prototypes, so as to allow the algorithm to
escape from local minima from time to time.

A slightly different task is to find the number of clusters in a dataset (e.g. [3]). This is
indeed a frequent problem in exploratory phases of data mining, and a straightforward
approach is to adopt a parameterized version of a clustering algorithm using the desired
number of data clusters K as parameter and to try a different clusterization for each
possible value of the parameter. Subsequently, the best result would be chosen based on
some validity measure or index.

However, it is impractical to run several random initializations of one algorithm for
each possible values of its parameter, especially when the latter spans a wide interval of

B. Apolloni et al. (Eds.): Neural Nets and Surroundings, SIST 19, pp. 11–20.
DOI: 10.1007/978-3-642-35467-0_2 c© Springer-Verlag Berlin Heidelberg 2013

12 A. Borghese and W. Capraro

values. Alternatively, in some cases it is possible to exploit the intrinsic characteristics
of some algorithms to produce dead units (e.g. [6]), to facilitate the search for a good
solution.

Recently, in the framework of central clustering, a different approach has been pro-
posed for moving the prototypes. The idea is that, while the winning prototype is at-
tracted by the closest data point, other prototypes are moved in the opposite direction.
This mechanism, known as rival-penalization [5,15], is somehow similar to the BCM
model proposed by Bienenstock, Cooper and Munro [9] in a typical Hebbian learning
fashion.

Rival-penalization clustering has been overlooked in the past. In this paper we
present the results of some tests we performed, aimed at comparing the rival-
penalization approach with classical clustering techniques, namely standard compet-
itive learning and SOM. The ability of rival-penalization of discovering the proper
number of clusters in a given dataset is analysed and discussed. Specifically, we show
that, by introducing the rival penalization mechanism into a competitive learning set-
ting, results comparable with soft-clustering can be achieved. Moreover, the number of
clusters can be discovered in a robust and reliable way.

2 Algorithms

We’ll consider a collection of N d-dimensional observations, {ξ j} . Goal of clustering
algorithms is to assign each observation to one of K clustersΨi, according to a similarity
measure with the other elements in the same cluster. Each cluster is represented by its
centroid, ψi, which is also a point in R

d .
The following subsections give a quick coverage of the algorithms we employed.

2.1 Competitive Learning and Rival Penalization

Competitive learning (CL) is an effective tool for data clustering, widely applied in a
variety of signal processing problems such as data compression, classification, adaptive
noise cancelation, image retrieval and image processing [2].

For the purposes of this contribution, a feed-forward neural network with a single
layer consisting of K output units is used to achieve a K-cluster data partitioning. Each
unit represents a cluster centroid ψi.

The training of the network proceeds as follows. At each iteration, each data point ξ
is presented in turn to the network and a winning unit, w, is elected. This is the prototype
whose Euclidean distance from the point is minimum:

w = argmin
i
‖ξ −ψi‖. (1)

Subsequently, the position of the winning unit is updated towards the data point using
the following updating rule

ψw j = ψw j +η(t)(ξ −ψw) (2)

where j denotes a component of the prototype vector and η(t) is a learning rate param-
eter whose value decays as a function of the time t.

Rival-Penalized Competitive Clustering 13

In a pure competitive learning setting, only the winning unit is updated. The proce-
dure is repeated multiple times for each data point, until the prototypes converge to their
final position—i.e. when the maximum difference in the position of any centroid in two
successive iterations is smaller than a fixed tolerance ε , or when a maximum number of
iterations is reached.

The prototypes are initialized using the ”Forgy” approach [1]—i.e. K of the available
data points are randomly chosen to serve as cluster prototypes. In this context, this is
enough to guarantee that no dead unit will ever appear, as every prototype shall win the
competition for at least one data point, that is, the prototype itself.

The rival-penalized competitive learning (RPCL) algorithm improves on the pure
competitive learning approach by introducing a rival penalization mechanism, as pro-
posed in [5] and [15]. With this approach, not only the position of the winning unit is
updated towards the input vector, but additionally the position of its rival unit is updated
in the opposite direction.

In order to find the winning unit and its rival, a relative winning frequency is intro-
duced, which keeps track of how many times each unit happens to win a competition
for some input vector. The relative winning frequency for unit i is defined as

γi =
si

∑K
j=1 s j

(3)

where si is the number of times unit i was declared winner in the past. When ∑K
j=1 s j =

0—i.e. initially, then γi = 1 in order to give every prototype a fair chance to win.
The winning unit w for an input vector ξ is now given by

w = argmin
i

γi‖ξ −ψi‖. (4)

Notice how the parameter γi acts as a “conscience” for the unit—if the unit has won
too often in the past, its chances to win the competition for the current data point are
reduced accordingly. Moreover, for each input vector ξ , the rival penalized competitive
learning algorithm computes not only the winning unit w, but also a second winning
unit, referred to as the rival, defined by

r = argmin
i

γi‖ξ −ψi‖, i �= w. (5)

Equation 2 is used to update both the winner and its rival. The latter, however, moves
away its centroid from the input point with a de-learning rate β , which is related to η
by

β(t) =−cη(t)γr (6)

where γr is the relative winning frequency of the rival and c = 1/10 is a predefined
constant. Unlike the implementation of [5], here β depends on both the learning rate η
and the winning frequency γr, so that the rival is dynamically penalized according to γr

even for constant η (which is not the case anyway).
In contrast to the CL algorithm, here a “Forgy” initialization of the prototypes is not

enough to guarantee dead unit avoidance. In fact, even if the prototypes are initialized
using the input data points, depending on the de-learning rate β , a rival unit may incur

14 A. Borghese and W. Capraro

considerable modification in the value of its prototype, and thus it can fail to win the
competition even for the input data point to which it had been initialized.

What is interesting with this approach is that, as reported in [5], if the learning rate η
is chosen to be at least one order of magnitude larger than β , then the adequate number
of output clusters will be automatically found. In other words, assuming that the actual
number of clusters is unknown and that the number of units K is chosen greater than the
cluster number, the prototype vectors will converge towards the centroids of the actual
clusters with few of them overlapping in space. In our implementation, this condition
holds in each iteration as c = 1/10. In each iteration, the RPCL algorithm pushes away
the rival, thus allowing for faster convergence, and invalidates extra prototypes by even-
tually making their cluster empty. Hence, the RPCL algorithm is believed to be able to
perform appropriate clustering without knowing the cluster number.

2.2 SOM

The limitation of considering only one data point at a time in competitive learning
has been overcome by soft-clustering approaches [2] in which the position of all the
prototypes is updated for each data point. Among these approaches, Self-Organizing
Maps (SOMs) represent an excellent tool in exploratory phases of data mining. They
project the input space onto prototypes in a low-dimensional regular grid that can be
effectively used to visualize and explore properties of the data. The SOM consists of
a regular, one- or two-dimensional grid of units, with each unit i represented by its
prototype vector ψi. Additionally, each unit i is assigned a place in the output grid,
represented by its coordinates ri = (xi,yi), and the units are logically linked to adjacent
ones by a neighborhood relation. During training, data points lying near each other in
the input space are mapped to nearby units in the output hyperplane. Thus, the SOM can
be regarded as a topology-preserving tool for mapping the input space onto the output
grid.

The SOM is trained iteratively. At each training step, a data point ξ is randomly
chosen from the input data set, and the distance between ξ and all the prototype vectors
is computed. Subsequently, all prototype vectors are updated, each proportionally to the
distance of the corresponding unit from the winning unit in the output grid:

ψi j = ψi j +η(t)Λ(i,w)(ξ −ψi). (7)

In the hereabove equation Λ(i,w) denotes the value of the neighborhood function be-
tween unit i and the winning unit w, as given by

Λ(i,w) = exp

(
−‖ri − rw‖2

2σ2

)
(8)

where the parameter σ defines the radius of the neighborhood. Λ(i,w) therefore defines
a region of influence for the prototype w. Notice that the value of Λ is exactly 1 when
i=w, and decreases as the distance of the prototype from the other data points increases.
Also, it is useful to adjust the radius as well as the learning rate at each iteration, so that
the influence region of a prototype decays with time as a function of σ and η .

Rival-Penalized Competitive Clustering 15

In this work, we are mainly concerned with the SOM’s ability to perform appropriate
clustering of a given data set. Thus, only SOMs with one-dimensional output arrays
are actually used. As stated in [16], this configuration is expected to produce better
results as compared to the 2-dimensional grid configuration. This is due to the fact
that the “tension” exerted in each unit by the neighboring units is much higher in the
second configuration, and such a tension limits the plasticity of the SOM to adapt to the
particular distributions of the dataset.

3 Experimental Setting and Test Results

In order to test the algorithms, we have generated a specific dataset containing 250
3-d data points distributed over 5 non-overlapping clusters. It has been generated by
perturbating the centroid of each cluster with a Gaussian distribution with mean value
0 and variance 1.

Since the resulting clusterization depends strongly on the initialization of prototypes,
it is essential that each algorithm be tested several times with different initializations.
For our tests, 60 “Forgy” initializations (which we’ll refer to as trials) have been gen-
erated and evaluated for each algorithm. This should be enough to overcome random
fluctuations.

As to the tests we conducted, they can be divided into two types. In a first type
thereof—we call it type-A experiment—we focused on a specific algorithm and tried to
partition our dataset varying the cluster number from K = 2 to K = 10. (And for each
K, 60 trials have been performed as described before.) On the other hand, in type-B
experiments we tested 60 trials of an algorithm with a fixed value of K but varying the
parameters of the algorithm instead.

In our tests, the validity of the resulting clusterization is evaluated by means of qual-
ity indexes, and the number of iterations required by the algorithm to converge was also
measured. The quality indexes used are the Davies-Bouldin (DB) index and the mean
quadratic error (MQE). The mean quadratic error is simply the ratio of the sum of all
the squared distances of each data point from its cluster prototype to the total number
of data points:

MQE =
∑K

i=1 ∑ξ∈Ψi
‖ξ −ψi‖2

∑K
i=1 |Ψi|

. (9)

The Davies-Bouldin index is defined as

DB =
1
K

K

∑
i=1

max
j �=i

{
Si + S j

‖ψi −ψ j‖

}
(10)

where Si is the within i-th cluster scatter, as given by

Si =

√√√√∑
ξ∈Ψi

‖ξ −ψi‖2

|Ψi|
. (11)

For a detailed review of these and other cluster validity measures see [8]. Notice that
it is geometrically plausible to seek clusters that have minimum within-cluster scatter

16 A. Borghese and W. Capraro

and maximum between-class separation, so the number of clusters K̄ that minimizes the
Davies-Bouldin index can be reasonably taken as the optimal value of K. As reported
in [8], for well-separated clusters, the Davies-Bouldin index is expected to decrease
monotonically as K increases until the correct number of clusters is achieved.

In all the tests conducted, we fixed a tolerance of ε = 0.001 and the maximum num-
ber of iterations was set to 500. It should be enough for the algorithms to produce good
clusterizations given the time-decay rule for η adopted, which is

η(t) = exp
(
− t

50

)
·η0 (12)

where η0 = 0.1 is the initial value and t = 0,1, . . . is the iteration number.
In the remaining of this section we illustrate the results of our tests.

3.1 Competitive Learning

To begin with, we measured the effectiveness of the standard CL algorithm in partition-
ing our dataset by running a type-A test. The results can be used throughout the rest of
this work as a reference for the other algorithms. For each value of K, Table 1 reports
the Davies-Bouldin index and the quadratic error for the best outcome out of the 60
trials of the algorithm, along with the number of iterations performed.

As Table 1 shows, the algorithm succeeds in discovering the correct number of clus-
ters: the DB index takes on its optimal value for K = 5.

As expected, the mean quadratic error is a decreasing function of the number of
clusters (indeed one expects the within-cluster variance to decrease in this case), and
hence it does not convey any useful information on the goodness of the result.

As a downside, the CL algorithm takes a considerable number of iterations to con-
verge, as in each iteration only the winning unit is moved towards the current data point
by a small, η-dependent, fraction of the distance. Moreover, in order to discover the
optimal value of the parameter K, every possible value has to be investigated and the
result evaluated. The average number of iterations is a decreasing function of K, which
is rather obvious since, for small K, we expect the amount of modification in the posi-
tion of each centroid as a function of the data points to be higher in each iteration as
compared to when K is large.

Fig. 1. Scatterplot of the dataset

Table 1. Type-A test results for CL

K DB MQE it

2 0.712 49.642 344
3 0.396 27.360 344
4 0.429 10.583 328
5 0.298 2.816 298
6 0.690 2.648 298
7 0.751 2.603 298
8 0.768 2.540 298
9 0.746 2.435 298
10 0.809 10.197 328

Rival-Penalized Competitive Clustering 17

Table 2. Type-A test results for SOM

(a) σ = 0.5

K nD DB MQE it

2 0 0.7123 49.6421 346
3 0 0.5779 32.8641 345
4 0 0.4291 10.5827 330
5 0 0.2983 2.8161 300
6 1 0.2983 2.8161 300
7 2 0.2983 2.8161 300
8 3 0.2983 2.8161 300
9 4 0.2983 2.8161 300

10 5 0.2983 2.8161 300

(b) σ = 1

K nD DB MQE it

2 0 0.7123 49.6421 346
3 0 0.5779 32.8641 345
4 0 0.4291 10.5827 330
5 0 0.2983 2.8161 300
6 1 0.2983 2.8161 300
7 2 0.2983 2.8161 300
8 3 0.2983 2.8161 300
9 3 0.7244 2.6374 294
10 3 1.0228 2.4724 294

(c) σ = 1.5

K nD DB MQE it

2 0 0.7123 49.6421 346
3 0 0.5779 32.8641 345
4 0 0.4291 10.5827 330
5 0 0.2983 2.8161 300
6 1 0.2983 2.8161 300
7 2 0.2983 2.8161 300
8 3 0.2983 2.8161 300
9 2 1.0505 2.5142 294
10 3 1.0710 2.5077 294

We have also investigated the role of the learning rate η in the learning process. To
this end, a type-B test has been performed in which a value of K = 5 has been fixed and
η takes on some values in the range (0.2-0.02). As before, 60 trials of the algorithm have
been tested for each value of η , and the best outcome is considered. We do not report
the results for space issues. We report, however, that the initial learning rate seems to
play no crucial role in the learning process, since for every value of η the best value
obtained for the DB index is the same as that of Table 1.

3.2 SOM

As our second test, we have investigated the performance of a SOM in achieving proper
clusterizations of the dataset. As before we ran a type-A test using a 1-dimensional
output array of units, as we are not interested in the spatial organization of the resulting
cluster centroids. The distance of each prototype from its neighbor prototypes on the
output array has been set arbitrarily to 1, which is also the initial value for the radius of
the neighborhood σ . The general idea is that, by exploiting the SOM’s inherent ability to
produce dead units, it is possible to avoid testing every possible value of the parameter
K provided it is chosen larger than the actual number of clusters. Results are reported in
Table 2b, where nD represents the number of dead units and again each line represents
the best outcome for all the 60 initializations, according to the Davies-Bouldin index.

As the table implies, the minimum of the DB index is obtained for values of K in
the range between K = 5 and K = 8. The values reported confirm the ability of the
SOM to produce good clusterizations of the dataset, with values comparable with that
of the competitive learning approach for all values of the parameter K. The results also
advocate the thesis that the SOM is able to invalidate extra clusters and discover the
correct number of clusters if the parameter K is chosen in a neighborhood of its optimal
value.

We did not expect the quality of the resulting clusterization to change considerably
as a function of the initial learning rate η , so we did not conduct any test in this respect.
It is interesting, however, to observe the behavior of the algorithm when the initial
radius is enlarged or restricted. Tables 2a and 2c also show the result of type-A tests

18 A. Borghese and W. Capraro

Table 3. Type-B test results for RPCL

(a) η = 0.1

K DB MQE it

1 5 0.2973 2.8166 298
2 8 14.1375 436.7141 499
3 5 0.2983 2.8161 298
4 7 0.8392 3.4301 337
5 5 0.2977 2.8162 298
6 5 0.2972 2.8165 298
7 5 0.2977 2.8162 298
8 5 0.2972 2.8168 298
9 8 1.2113 127.1700 485
10 5 0.2980 2.8161 298
11 9 1.9186 283.6699 486
12 5 0.2981 2.8161 298
13 9 1.5104 2.2541 285
14 10 1.4525 32.4955 438
15 8 1.8814 119.3174 478
16 9 3.2711 1289.8495 499
17 5 0.2981 2.8161 298
18 10 1.3259 2.0547 283
19 5 0.2964 2.8175 298
20 7 0.8711 2.4896 298
21 5 0.2961 2.8180 298
22 8 1.2890 187.3231 478
23 5 0.2983 2.8161 298
24 10 1.4116 2.0938 287
25 8 1.7381 87.3881 429
26 5 0.2959 2.8205 298
27 8 1.4844 786.6143 499
28 9 2.2929 931.2280 499
29 5 0.2983 2.8161 298
30 5 0.2967 2.8174 298
31 5 0.2970 2.8167 298
32 5 0.2975 2.8164 298
33 5 0.2983 2.8161 298
34 5 0.2959 2.8183 298
35 7 0.8889 2.5653 292
36 5 0.2983 2.8161 298
37 5 0.2973 2.8165 298
38 5 0.2979 2.8161 298
39 5 0.2973 2.8164 298
40 7 1.4684 206.7596 491
41 5 0.2975 2.8164 298
42 5 0.2959 2.8188 298
43 9 1.0727 2.5370 297
44 5 0.2975 2.8163 298
45 9 1.2583 69.7734 465
46 9 1.2287 150.8042 494
47 8 1.3926 246.4092 499
48 5 0.2959 2.8183 298
49 7 2.1666 222.3385 487
50 5 0.2983 2.8161 298
51 5 0.2958 2.8192 298
52 9 1.4211 51.5298 445
53 5 0.2976 2.8162 298
54 5 0.2970 2.8168 298
55 9 1.3163 988.7258 499
56 5 0.2982 2.8161 298
57 9 1.2233 2.2424 292
58 8 1.7596 428.0865 499
59 5 0.2978 2.8161 298
60 5 0.2982 2.8161 298

(b) η = 0.3

K DB MQE it

1 5 0.3312 3.6632 366
2 5 0.2955 2.8196 353
3 5 0.2978 2.8162 353
4 6 1.0019 594.3351 499
5 10 3.2478 12092.0839 499
6 9 2.2782 27149.0575 499
7 7 2.2396 407.3565 499
8 1 n.a. n.a. 499
9 9 2.0219 14926.2644 499
10 8 1.0686 111.9457 499
11 1 n.a. n.a. 494
12 1 n.a. n.a. 496
13 8 3.3781 736.2310 499
14 6 0.6007 2.6212 353
15 9 1.1331 2.4473 363
16 8 1.1660 254.0439 499
17 9 4.7230 68607.6355 499
18 1 n.a. n.a. 499
19 1 n.a. n.a. 486
20 1 n.a. n.a. 459
21 5 0.2948 2.8272 353
22 1 n.a. n.a. 499
23 8 1.4005 22.1895 463
24 7 0.8376 2.4683 345
25 9 1.1667 2.7230 374
26 1 n.a. n.a. 495
27 9 1.1134 6.0580 410
28 8 1.1568 355.1591 499
29 6 1.4096 91.4646 443
30 7 1.1727 7076.8766 499
31 9 1.2331 22.9518 479
32 9 1.4621 599.8796 499
33 9 1.2037 2.8699 384
34 8 0.9067 2.8137 374
35 1 n.a. n.a. 470
36 10 3.6183 406.4338 499
37 7 2.0509 729.5399 499
38 8 0.9922 2.6372 352
39 9 1.2467 32.5807 487
40 1 n.a. n.a. 467
41 1 n.a. n.a. 499
42 8 1.8052 5702.3187 499
43 9 1.0551 2.6401 363
44 1 n.a. n.a. 499
45 9 1.6941 22.7070 461
46 1 n.a. n.a. 499
47 7 1.7933 317.9108 499
48 9 1.1090 3.3827 386
49 9 1.1030 3.8625 396
50 7 1.0535 1192.2263 499
51 10 1.9694 1978.7778 499
52 5 0.2982 2.8161 353
53 8 5.0827 783.8008 499
54 7 1.9763 3376261.9184 499
55 9 1.2069 39.0237 497
56 5 0.2983 2.8161 353
57 5 0.2894 2.9133 354
58 7 1.0936 701.7895 499
59 1 n.a. n.a. 499
60 8 2.7499 133.5437 499

(c) η = 0.5

K DB MQE it

1 6 0.9961 1743.7830 499
2 7 1.1205 529.9871 499
3 1 n.a. n.a. 499
4 9 1.0335 8.1133 440
5 8 2.0086 1834.3202 499
6 6 0.6528 2.9607 411
7 7 1.7469 27172.1130 499
8 1 n.a. n.a. 499
9 1 n.a. n.a. 499
10 1 n.a. n.a. 499
11 3 1.3013 84.3499 454
12 7 1.0529 659.0174 499
13 8 1.5026 353.7500 499
14 5 0.2983 2.8161 379
15 7 1.3130 663.7360 499
16 1 n.a. n.a. 499
17 4 0.9470 45.7815 432
18 9 8.7524 200.3968 499
19 8 1.3188 35309.9092 499
20 8 2.2503 712.0748 499
21 5 0.2983 2.8161 379
22 1 n.a. n.a. 499
23 1 n.a. n.a. 499
24 1 n.a. n.a. 499
25 7 0.7805 3.0149 401
26 6 1.0100 270.6201 499
27 1 n.a. n.a. 454
28 7 2.1072 12438.7022 499
29 1 n.a. n.a. 499
30 7 1.0933 3285294.0383 499
31 8 0.9186 3.4217 410
32 9 2.0005 4802.1818 499
33 7 0.9568 2.8659 402
34 8 2.0441 15709.4822 499
35 9 8.6214 631.4390 499
36 7 1.0028 502.4863 499
37 1 n.a. n.a. 499
38 1 n.a. n.a. 499
39 7 2.0152 147.8561 482
40 2 0.7452 106.3408 445
41 8 2.7086 503.6955 499
42 6 2.6311 41958.7468 499
43 8 2.3926 889.5130 499
44 6 0.9915 904.8396 499
45 5 1.6410 564.5119 499
46 1 n.a. n.a. 499
47 1 n.a. n.a. 499
48 7 1.1248 208.1925 499
49 1 n.a. n.a. 499
50 1 n.a. n.a. 499
51 2 0.8228 102.4013 450
52 7 0.8945 2.7744 378
53 7 1.0473 1132.3572 499
54 1 n.a. n.a. 499
55 6 1.0058 582.4626 499
56 1 n.a. n.a. 499
57 10 6.9798 282791.2331 499
58 1 n.a. n.a. 469
59 6 0.9993 464.6136 499
60 1 n.a. n.a. 499

Rival-Penalized Competitive Clustering 19

for σ = 1.5 and σ = 0.5: results show a general tendency of the radius to influence the
ability of the SOM to kill extra units—this ability seems to increase as the radius of the
neighborhood narrows.

3.3 Competitive Clustering with Rival Penalization

Lastly, we have analysed the performance of our RPCL implementation in discovering
the correct number of clusters. As suggested in [5] we have chosen a number of clus-
ters, K = 10, larger than the true number of clusters. Recall that the de-learning rate
β is always at least one order of magnitude smaller than η . Once again we considered
60 “Forgy” initialization of the algorithm, and ran three type-B tests using different
learning rates, namely η = 0.1, η = 0.3 and η = 0.5. Results are reported in Tables 3a
through 3c, where we have indicated with k the number of partitions in the resulting
clusterization, and with # the trial number. For each value of η , we have highlighted
the best result according to the Davies-Bouldin index.

Results reveal the following aspects. As expected, the algorithm exhibits a strong
ability to invalidate extra units. Such ability appears to be stronger compared to the
SOM, as suggested by the fact that the algorithm has always been able to obtain correct
clusterizations of the dataset—i.e. five clusters, associated with extremely good values
for the Davies-Bouldin index.

Moreover, this ability is only partially affected by the choice of the initial learning
rate η—as Table 3 implies, the RPCL algorithm has been able to obtain correct parti-
tionings of the dataset in the 56.67% of the trials for η = 0.1, 11.67% for η = 0.3 and
5% for η = 0.5. In this respect, a higher learning rate does augment the ability of the
rival units to move in the data space, and hence the ability of the algorithm to invalidate
extra clusters1, but the success or failure of the algorithm is ultimately due to the good-
ness of the initialization of the prototypes. As a consequence, we expect the algorithm
to succeed independently of the learning rate as long as the number of initializations
tested is large enough.

4 Discussion and Conclusion

In conclusion, all the algorithms tested work reasonably well and produce good cluster-
izations of the dataset. However, if the main task is to make use of one such methods to
discover the number of clusters in a given dataset, the rival-penalized competitive learn-
ing approach appears to be more robust and practical, since it exhibits a remarkable
ability to invalidate extra units—i.e. clusters—depending on the prototype initializa-
tion, provided the number of initializations tested is large enough. Hence, this method
comes in handy when the number of clusters of a dataset is unknown.

If the number of clusters is not known exactly but it is known to belong to a range of
a few possible values, then the self-organizing map can also guess the correct number of
clusters and yield a good clusterization, providing multiple, random initializations are
tested and the prototypes are drawn from the input dataset. However, the performance

1 Note that, in some cases, this ability has reached a point in which the algorithm produced a
1-cluster partitioning, for which the Davies-Bouldin index is structurally not defined and the
quadratic error loses its significance.

20 A. Borghese and W. Capraro

of the SOM exhibits a strong dependency on the value of the parameters, and finding
the optimal values for the radius and the step-length can be a challenging task. In this
respect, the rival-penalized competitive learning approach is to be preferred over the
SOM. Moreover, the SOM involves greater workload compared to the rival-penalized
method or the standard competitive learning method, and hence its use in a context
where the spatial organization of the output units is of little or no interest appears to be
questionable.

Lastly, if the number of clusters is known in advance and the goal is simply to pro-
duce a clusterization of the dataset, the basic competitive learning algorithm works
fairly well and is less susceptible to the initialization of the prototypes and does not
suffer from the dead unit problem. Additionally, it has the highest performance-to-cost
ratio, although the number of clusters and the learning rate can play a crucial role in
this respect.

References

1. Forgy, E.W.: Cluster analysis of multivariate data: efficiency vs interpretability of classifica-
tions. Biometrics 21, 768–769 (1965)

2. Xu, R., Wunsch, D.: Survey of Clustering Algorithms. IEEE Transactions on Neural Net-
works 16, 645–678 (2005)

3. Sugar, C.A., James, G.M.: Finding the number of clusters in a dataset: an information theo-
retic approach. Journal of the American Statistical Association 98, 750–763 (2003)

4. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: “Neural Gas” network for vector quantiza-
tion and its application to time-series prediction. IEEE Transactions on Neural Networks 4,
558–569 (1993)

5. Budura, G., Botoca, C., Miclău, N.: Competitive Learning Algorithms for Data Clustering.
Electronics and Energetics 19, 261–269 (2006)

6. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cy-
bernetics 43, 59–69 (1982)

7. Erwin, E., Obermayer, A., Schulten, K.: Self-organizing maps: ordering, convergence, prop-
erties and energy functions. Biological Cybernetics 67, 47–55 (1992)

8. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Transactions on Systems,
Man, and Cybernetics 28, 301–315 (1998)

9. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Neuroscience 2, 32–48 (1982)
10. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Science 220,

671–680 (1983)
11. Ferrari, S., Ferrigno, G., Piuri, V., Borghese, N.A.: Reducing and Filtering Point Clouds with

Enhanced Vector Quantization. IEEE Transactions on Neural Networks 18, 161–177 (2007)
12. Uchiyama, T., Arbib, M.A.: An algorithm for competitive learning in clustering problems.

Pattern Recognition 27, 1415–1421 (1994)
13. Fritzke, B.: A growing Neural Gas network learns topologies. Advances in Neural Informa-

tion Processing Systems 7, 625–632 (1995)
14. Bezdek, J.: Pattern recognition with fuzzy objective function algorithms. Plenum Press, New

York (1981)
15. King, I., Lau, T.-K.: Non-hierarchical Clustering with Rival Penalized Competitive Learning

for Information Retrieval. In: Perner, P., Petrou, M. (eds.) MLDM 1999. LNCS (LNAI),
vol. 1715, pp. 116–130. Springer, Heidelberg (1999)

16. Bação, F., Lobo, V., Painho, M.: Self-organizing Maps as Substitutes for K-Means Cluster-
ing. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005.
LNCS, vol. 3516, pp. 476–483. Springer, Heidelberg (2005)

An Interpretation of the Boundary Movement Method
for Imbalanced Dataset Classification

Based on Data Quality

Dario Malchiodi

Dipartimento di Informatica, Università degli Studi di Milano, Italy
malchiodi@di.unimi.it

Abstract. This paper describes how the classification of imbalanced datasets
through support vector machines using the boundary movement method can be
easily explained in terms of a cost-sensitive learning algorithm characterized by
giving each example a cost in function of its class. Moreover, it is shown that
under this interpretation the boundary movement is measured in terms of the
squared norm of the separator’s slopes in feature space, thus providing practical
insights in order to properly choose the boundary surface shift.

1 Introduction

Many real-world problems cannot be solved directly because no formulation attempting
to process them, even in an inefficient way according to the computational complexity
theory [1], is known. Despite of this fact, such problem instances can be tackled indi-
rectly because given a set of candidate solutions it is relatively easy to assert which ones
will actually solve the problem and which won’t. Refer to these two types of candidate
solutions as positive and negative examples, respectively, and consider for instance the
problem of face recognition [2]: while there is no agreement on the mechanisms un-
derlying the way our brain recognizes a given face, it is fairly easy to state with good
confidence if the face of known person, say Mr. White, appears on an image. Thus it
is possible to build a dataset gathering several (positive and negative) examples. Such
dataset can be processed by a machine learning algorithm having the aim of infer-
ring an automatic classifier able to answer future queries related to the recognition of
Mr. White.

Datasets such as those involved in face recognition often share the property of being
imbalanced, as finding images not representing the face of a given person is far easier
than finding images of that person. Thus examples from one class are represented in a
sensibly lower quantity than those of the remaining classes. Many real-world instances
of the classification problem fall into this special category, such as for instance happens
in the fields of fraud detection or fingerprinting recognition. Indeed, it is expectable that
when considering, e.g., payment requests issued by a credit card, only a small fraction
of these will actually describe a fraud. Likewise, when comparing a latent fingerprint

B. Apolloni et al. (Eds.): Neural Nets and Surroundings, SIST 19, pp. 21–27.
DOI: 10.1007/978-3-642-35467-0_3 c© Springer-Verlag Berlin Heidelberg 2013

22 D. Malchiodi

found on a crime scene against a forensic database, most of the available records will
not refer to the found fingerprint.

The problem of imbalanced classification has been considered by various perspec-
tives, including those:

– rebalancing positive and negative examples’ representatives, either undersampling
the over-represented class [3], oversampling the under-represented one [4], or per-
forming both operations [5];

– post-processing of the classifiers in output of general-purpose learning algorithms
[6];

– focusing only on the under-represented class, to be learnt through unsupervised
techniques [7], so that the over-represented class is indirectly inferred through com-
plementation of the under-represented one;

– tailoring learning algorithms for the special case of imbalanced data [8].

This paper focus on the relations between the second and the fourth approach when
they are applied to the widely used classification methodology based on support vector
machines [9]. When using these tools, the classifier inference is reformulated in terms
of the solution of a constrained optimization problem depending on the original exam-
ples, and this solution is in turn translated into a hyperplane separating the images of
examples in a suitable feature space. In particular, it is shown that the post-processing
technique proposed in [6], consisting in shifting the threshold of previously mentioned
hyperplane, constitutes the special case of a cost-sensitive algorithm for support vec-
tor classification (that is, an algorithm assigning distinct costs to each example and
using these costs in order to build the optimization problem to be solved [10]). This
equivalence will suggest a practical rule in order to set the shift for the hyperplane
learnt through support vector classification in order to account for the amount of class
imbalance.

The paper is organized as follows: Sect. 2 briefly reviews the employed cost-sensit-
ive methodology tailored for support vector classification, while Sect. 3 describes the
application of this methodology to the problem of imbalanced classification. Finally,
Sect. 4 is devoted to concluding remarks.

2 Cost-Sensitive Classification through Support Vector Machines

The proposed approach uses as a starting point the cost-sensitive classification algo-
rithm presented in [11]. This algorithm receives as input a sample

{(xi,yi,ri), i = 1, . . . ,m}, (1)

for some m ∈ N, where the pair (xi,yi) ∈ X ×{−1,1} gathers a pattern and a label,
thus corresponding to a labeled example for the classification problem while ri (hence-
forth referred to as quality) quantifies the confidence that the association of label yi to

An Interpretation of the Boundary Movement Method 23

object xi in previous example is actually correct. The algorithm is formalized, as usual,
through a constrained optimization problem that reads as follows:

min
w,b

1
2

w ·w+C
m

∑
i=0

ξi

w ·
(

Φ(xi)−
ri

2
w
)
+ b ≥ 1− ξi ∀i : yi =+1 (2)

w ·
(

Φ(xi)+
ri

2
w
)
+ b ≤−1+ ξi ∀i : yi =−1,

ξi ≥ 0 ∀i = 1, . . . ,m.

In the above formulation Φ is a mapping from X onto a space H, within which the op-
timization process aims at finding a hyperplane (having w and b respectively as slopes
and threshold) separating the images through Φ of patterns associated to positive labels
from those associated to negative labels. Slack variables ξ1, . . . ,ξm allow this hyper-
plane to perform mistakes in the separation process (precisely, pattern xi is misclas-
sified when ξi > 1), and the value of parameter C > 0 balances the two optimization
components, namely the number of mistakes and the separator margin (the latter being
related to the generalization capability of the inferred classifier [12]). The difference
between (2) and the problem at the basis of classical support vector classifier [9] lies
in the presence of ri, whose effect is that of performing a virtual shift on the patterns
images according to the related quality value. More precisely:

– when ri > 0 point Φ(xi) is shifted along the direction normal w.r.t. the separating
surface, moving towards the latter with the effect of increasing the distance between
the actual classifier and the original pattern position (see Fig. 1(a));

– when ri < 0 the shift occurs in the opposite direction, so that if ri is sufficiently
large pattern xi will be misclassified (see Fig. 1(b));

– finally, when ri has a null value nothing changes in the problem formulation.

Applying standard results of duality theory [13] the solution of (2) is linked to that of
the following problem:

max
α1,...,αm

∑
i

αi −
1

2(1+∑l αl rl)
∑
i, j

αiα jyiy jk(xi,x j)

∑
i

αiyi = 0 (3)

0 ≤ αi ≤C ∀i = 1, . . . ,m,

where k is the kernel function associated to Φ , defined by k(xi,x j) = Φ(xi) ·Φ(x j).
More precisely, denoted by α∗

1 , . . . ,α
∗
m the optimal values for (3), the solution of (2)

occurs in correspondence of:

w∗ =
1

1+∑l α∗
l rl

∑
i

α∗
i yiΦ(xi), (4)

b∗ = yi −w∗ ·Φ(xi)+
yiri

2
w∗ ·w∗ for i such that 0 < α∗

i <C, (5)

24 D. Malchiodi

(a) (b)

Fig. 1. Virtually shifting patterns in order to take into account the quality of their corresponding
examples: (a) the image of a pattern such that ri > 0 is shifted toward the separating surface of
the original problem (plain line), with the effect of increasing the distance between the classifier
(dashed line) and the original point position; (b) when ri < 0 the image is shifted in the opposite
direction, so that its distance w.r.t. the classifier is reduced.

so that the label of a new point xnew can be inferred as ynew = sign(w∗ ·Φ(xnew)+ b∗),
which translates into:

ynew = sign

(
1

1+∑l α∗
l rl

∑
i

α∗
i yik(xi,x

new)+ y j+

− 1
1+∑l α∗

l rl
∑

i

α∗
i yik(xi,x j)+

y jr j

2
1

(1+∑l α∗
l rl)2 ∑

i,h

α∗
i α∗

h yiyhk(xi,xh)

)
,

where j in the second sum has been chosen so that 0 < α∗
j <C.

It has been shown that this approach promotes the correct classification of examples
when ri is positive and conversely tends to misclassify examples characterized by a
negative ri [11]. The evident drawback consists in the high nonlinearity of the objective
function in (3), while in standard support vector classification this function is quadratic.
This fact essentially precludes an efficient processing of the related optimization prob-
lem in order to numerically approximate its solution.

3 Classification of Imbalanced Data

An interesting application of the procedure described in Sect. 2 having the additional
benefit of being formulated as a quadratic optimization concerns the classification of
imbalanced data. Indeed, this can be easily accomplished through association of a fixed
positive quality value to each example from the under-represented class and a fixed

An Interpretation of the Boundary Movement Method 25

negative quality value to the remaining examples. As a result, the classification algo-
rithm will be pushed to correctly classify the under-represented class, possibly at the
expense of an erroneous classification of the over-represented one. The simplest way to
implement this strategy is that of setting ri = yi, so that (2) becomes

min
w,b

1
2

w ·w+C
m

∑
i=0

ξi

yi

(
w ·
(

Φ(xi)−
1
2

)
+ b

)
≥ 1− ξi ∀i = 1, . . . ,m (6)

ξi ≥ 0 ∀i = 1, . . . ,m.

Note how this formulation uses the “costs” ri in order to directly shape the problem con-
straint instead of modifying its objective function as in other cost-sensitive approaches
to support vector classification. The dual form of this problem simplifies to

max
α1,...,αm

∑
i

αi −
1
2 ∑

i, j
αiα jyiy jk(xi,x j)

∑
i

αiyi = 0 (7)

0 ≤ αi ≤C ∀i = 1, . . . ,m.

The latter problem coincides with the original support vector classification algorithm
[9] whose solution (wsvc,bsvc) in the primal space can be efficiently found using any
of the available standard tools and techniques (refer for instance to the SMO algorithm
[14]). Substituting ri = yi in (4–5) shows that the the optimal solution of (6) occurs in
correspondence of w∗ = wsvc and b∗ = bsvc + 1

2 ||wsvc||2.
It is also easy to prove that the same analysis can be applied to the general case

ri = ryi for any r > 0, obtaining the optimization problem

min
w,b

1
2

w ·w+C
m

∑
i=0

ξi

yi

(
w ·
(

Φ(xi)−
r
2

)
+ b
)
≥ 1− ξi ∀i = 1, . . . ,m (8)

ξi ≥ 0 ∀i = 1, . . . ,m,

whose optimal values are:

w∗ = wsvc, (9)

b∗ = bsvc + r
1
2
||wsvc||2. (10)

The solution in (9–10) corresponds to rediscovering the so-called boundary movement
method for the classification of imbalanced datasets with support vector machines [6],
which captures the intuitive idea of suitably shifting the threshold value for the sep-
arating hyperplane in order to account for the under-representation of one class w.r.t.
the remaining one. Equation (10) states that this shift can be measured in terms of the

26 D. Malchiodi

squared norm of the separating hyperplane slopes. The latter quantity represents the
optimal value of the first addend in the objective function of (8), which in turn can be
expressed as a function of the maximized margin of the classifier [9] through an inverse
relation property: precisely

μ∗ =
2

||w∗|| , (11)

where μ∗ denotes the maximal margin.
Note also that the shift is always positive: indeed it is expressed as a positive mul-

tiple of a squared norm in (10), meaning that the region of X associated to the under-
represented class is being enlarged.

The obtained result implicitly sets the following rule in order to preliminary fix the
shift amount when applying the boundary movement method:

1. solve the original formulation support vector classification problem (i.e. that not
taking into account the data imbalance), obtaining wsvc and bsvc through standard
tools;

2. compute the value 1
2 ||wsvc||2;

3. fix the initial shift as r times the quantity computed on previous point, with r > 0.

Elementary algebraic considerations involving equations 10 and 11 rediscover the nat-
ural assertion that when the optimal margin assumes a big value, a unit move of bsvc

will correspond to shifting the hyperplane by a small (possibly fractional) number of
margins and vice versa.

4 Conclusions

This work showed that the boundary movement method used as a post-processing tech-
nique for classifiers learnt through the support vector method in order to account for
class imbalance can be viewed as a special case of a cost-sensitive modification of the
original support vector learning algorithm. The formulation of the latter, where costs
are used to shape the optimal problem’s constraints rather than its objective function,
suggests a rule for setting the boundary movement involving the classifier margin.

References

1. Papadimitriou, C.H.: Computational complexity. Addison-Wesley, Reading (1994)
2. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face Recognition: A Literature Survey.

ACM Computing Surveys 35(4), 399–458 (2003)
3. Tang, Y., Zhang, Y., Chawla, N.V., Krasser, S.: SVMs Modeling for Highly Imbalanced Clas-

sification. IEEE Transactions on Systems, Man, and Cybernetics, Part B 39(1), 281–288
(2009)

4. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: Syntetic Minority Over-
sampling Techinque. Journal of Artificial Intelligence Reserarch 16, 321–357 (2002)

5. Stefanowski, J., Wilk, S.: Improving Rule-Based Classifiers Induced by MODLEM by Se-
lective Preprocessing of Imbalanced Data. In: Proceedings of the Workshop RSKD at Euro-
pean Conference on Machine Learning and Principles of Knowledge Discovery in Databases,
Warszawa, September 17-21, pp. 54–65 (2007)

An Interpretation of the Boundary Movement Method 27

6. Wu, G., Chang, E.: Class-Boundary Alignment for Imbalanced Dataset Learning. In: ICML
2003 Workshop on Learning from Imbalanced Data Sets (II), pp. 49–56 (2003)

7. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support Vector Clustering. Journal of
Machine Learning Research 2, 125–137 (2001)

8. Wu, G., Chang, E.Y.: Adaptive Feature-Space Conformal Transformation for Imbalanced-
Data Learning. In: Proceedings of the Twentieth International Conference on Machine Learn-
ing (ICML 2003), pp. 816–823 (2003)

9. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20, 121–167 (1995)
10. Elkan, C.: The Foundations of Cost-Sensitive Learning. In: Proceedings of the 17th Interna-

tional Joint Conference on Artificial Intelligence, pp. 973–978 (2001)
11. Apolloni, B., Malchiodi, D., Natali, L.: A Modified SVM Classification Algorithm for Data

of Variable Quality. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS
(LNAI), vol. 4694, pp. 131–139. Springer, Heidelberg (2007)

12. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regulariza-
tion, Optimization, and Beyond. MIT Press, Cambridge (2002)

13. Fletcher, R.: Practical Methods of Optimisations, 2nd edn. John Wiley & Sons, Chichester
(1987)

14. Platt, J.: Fast Training of Support Vector Machines Using Sequential Minimal Optimization.
In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods – Support
Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)

Genetic Algorithm Modeling with GPU Parallel

Computing Technology

Stefano Cavuoti1, Mauro Garofalo2, Massimo Brescia1,3,�, Antonio Pescape’2,
Giuseppe Longo1,4, and Giorgio Ventre2

1 Department of Physics, University Federico II, Via Cinthia 6, I-80126 Napoli, Italy
brescia@oacn.inaf.it

2 Department of Computer Engineering and Systems, University Federico II,
Via Claudio 21, I-80125 Napoli, Italy

3 INAF, Astronomical Observatory of Capodimonte, Via Moiariello 16, I-80131
Napoli, Italy

4 Visiting Associate, California Institute of Technology, Pasadena, CA 91125, USA

Abstract. We present a multi-purpose genetic algorithm, designed and
implemented with GPGPU / CUDA parallel computing technology. The
model was derived from a multi-core CPU serial implementation, named
GAME, already scientifically successfully tested and validated on astro-
physical massive data classification problems, through a web application
resource (DAMEWARE), specialized in data mining based on Machine
Learning paradigms. Since genetic algorithms are inherently parallel, the
GPGPU computing paradigm has provided an exploit of the internal
training features of the model, permitting a strong optimization in terms
of processing performances and scalability.

Keywords: genetic algorithms, GPU programming, data mining.

1 Introduction

Computing has started to change how science is done, enabling new scientific
advances through enabling new kinds of experiments. They are also generating
new kinds of data of increasingly exponential complexity and volume. Achieving
the goal of being able to use, exploit and share most effectively these data is a
huge challenge. The harder problem for the future is heterogeneity, of platforms,
data and applications, rather than simply the scale of the deployed resources.
Current platforms require the scientists to overcome computing barriers between
them and the data [1].

The present paper concerns the design and development of a multi-purpose ge-
netic algorithm implemented with the GPGPU/CUDA parallel computing tech-
nology. The model comes out from the machine learning supervised paradigm,
dealing with both regression and classification scientific problems applied on

� Corresponding author.

B. Apolloni et al. (Eds.): Neural Nets and Surroundings, SIST 19, pp. 29–39.
DOI: 10.1007/978-3-642-35467-0_4 c© Springer-Verlag Berlin Heidelberg 2013

30 S. Cavuoti et al.

massive data sets. The model was derived from the original serial implemen-
tation, named GAME (Genetic Algorithm Model Experiment) deployed on the
DAME [8] Program hybrid distributed infrastructure and made available through
the DAMEWARE [9] data mining (DM) web application. In such environment
the GAME model has been scientifically tested and validated on astrophysical
massive data sets problems with successful results [2]. As known, genetic al-
gorithms are derived from Darwin’s evolution law and are intrinsically parallel
in its learning evolution rule and processing data patterns. The parallel com-
puting paradigm can indeed provide an optimal exploit of the internal training
features of the model, permitting a strong optimization in terms of processing
performances.

2 Data Mining Based on Machine Learning and Parallel
Computing

Let’s start from a real and fundamental assumption: we live in a contemporary
world submerged by a tsunami of data. Many kinds of data, tables, images,
graphs, observed, simulated, calculated by statistics or acquired by different
types of monitoring systems. The recent explosion of World Wide Web and
other high performance resources of Information and Communication Technol-
ogy (ICT) are rapidly contributing to the proliferation of such enormous informa-
tion repositories. Machine learning (ML) is a scientific discipline concerned with
the design and development of algorithms that allow computers to evolve behav-
iors based on empirical data. A learner can take advantage of examples (data)
to capture characteristics of interest of their unknown underlying probability
distribution. These data form the so called Knowledge Base (KB): a sufficiently
large set of examples to be used for training of the ML implementation, and to
test its performance. The DM methods, however, are also very useful to capture
the complexity of small data sets and, therefore, can be effectively used to tackle
problems of much smaller scale [2].

DM on Massive Data Sets (MDS) poses two important challenges for the com-
putational infrastructure: asynchronous access and scalability. With synchronous
operations, all the entities in the chain of command (client, workflow engine, bro-
ker, processing services) must remain up for the duration of the activity: if any
component stops, the context of the activity is lost.

Regarding scalability, whenever there is a large quantity of data, the more
affordable approach to making learning feasible relies in splitting the problem
in smaller parts (parallelization) sending them to different CPUs and finally
combine the results together. So far, the parallel computing technology chosen
for this purpose was the GPGPU.

GPGPU is an acronym standing for General Purpose Computing on Graphics
Processing Units. It was invented by Mark Harris in 2002, [3], by recognizing
the trend to employ GPU technology for not graphic applications. With such
term we mean all techniques able to develop algorithms extending computer
graphics but running on graphic chips. In general the graphic chips, due to

Genetic Algorithm Modeling with GPU Parallel Computing Technology 31

their intrinsic nature of multi-core processors (many-core) and being based on
hundreds of floating-point specialized processing units, make many algorithms
able to obtain higher (one or two orders of magnitude) performances than usual
CPUs (Central Processing Units). They are also cheaper, due to the relatively
low price of graphic chip components.

The choice of graphic device manufacturers, like NVIDIA Corp., was the
many-core technology (usually many-core is intended for multi-core systems over
32 cores). The many-core paradigm is based on the growth of execution speed
for parallel applications. Began with tens of cores smaller than CPU ones, such
kind of architectures reached hundreds of core per chip in a few years. Since 2009
the throughput peak ratio between GPU (many-core) and CPU (multi-core) was
about 10:1. Such a large difference has pushed many developers to shift more
compu-ting-expensive parts of their programs on the GPUs.

3 The GAME Model

An important category of supervised ML models and techniques, in some way
related with the Darwin’s evolution law, is known as evolutionary (or genetic)
algorithms, sometimes also defined as based on genetic programming [4]. The
slight conceptual difference between evolutionary and genetic algorithms is that
the formers are problem-dependent, while the latters are very generic.

GAME is a pure genetic algorithm specially designed to solve supervised op-
timizations problems related with regression and classification functionalities,
scalable to efficiently manage MDS and based on the usual genetic evolution
methods (crossover, genetic mutation, roulette/ranking, elitism). In order to
give a level of abstraction able to make simple to adapt the algorithm to the
specific problem, a family of polynomial developments was chosen for GAME
model. This methodology makes the algorithm itself easily expandable, but this
abstraction requires a set of parameters that allows fitting the algorithm to the
specific problem.

From an analytic point of view, a pattern, composed of N features contains an
amount of information correlated between the features corresponding to the tar-
get value. Usually in a real scientific problem that correlation is masked from the
noise (both intrinsic to the phenomenon, and due to the acquisition system); but
the unknown correlation function can ever be approximated with a polynomial
sequence, in which the degree and non-linearity of the chosen function determine
the approximation level. The generic function of a polynomial sequence is based
on these simple considerations:

Given a generic dataset with N features and a target t, pat a generic input
pattern of the dataset, pat = (f1, ..., fN , t) and g(x) a generic real function, the
representation of a generic feature fi of a generic pattern, with a polynomial
sequence of degree d is:

G(fi) ∼= a0 + a1g(fi) + ...+ adg
d(fi) (1)

32 S. Cavuoti et al.

Hence, the k-th pattern (patk) with N features may be represented by:

Out(patk) ∼=
N∑
i=1

G(fi) ∼= a0 +

N∑
i=1

d∑
j=1

ajg
j(fi) (2)

Then target tk, concerning to pattern patk, can be used to evaluate the approx-
imation error of the input pattern to the expected value:

Ek = (tk −Out(patk))
2 (3)

If we generalize the expression (2) to an entire dataset, with NP number of
patterns (k = 1, ..., NP), at the end of the forward phase (batch) of the GA, we
obtain NP expressions (2) which represent the polynomial approximation of the
dataset.

In order to evaluate the fitness of the patterns as extension of (3), the Mean
Square Error (MSE) or Root Mean Square Error (RMSE) may be used.

Then we define a GA with the following characteristics:

– The expression (2) is the fitness function;
– The array (a0, ..., aM) defines M genes of the generic chromosome (initially

they are generated random and normalized between -1 and +1);
– All the chromosomes have the same size (constrain from a classic GA);
– The expression (3) gives the standard error to evaluate the fitness level of

the chromosomes;
– The population (genome) is composed by a number of chromosomes imposed

from the choice of the function g(x) of the polynomial sequence.

About the last item, this number is determined by the following expression:

NUMchromosomes = (B ·N) + 1 (4)

where N is the number of features of the patterns and B is a multiplicative factor
that depends from the g(x) function, which in the simplest case is just 1, but
can arise to 3 or 4 in more complex cases. The parameter B also influences the
dimension of each chromosome (number of genes):

NUMgenes = (B · d) + 1 (5)

where d is the degree of the polynomial. For example if we use the trigonometric
polynomial expansion, given by the following expression (hereinafter polytrigo),

g(x) = a0 +

d∑
m=1

am cos(mx)+

d∑
m=1

bm sin(mx) (6)

in order to have 200 patterns composed by 11 features, the expression using (2)
with degree 3, will become:

Genetic Algorithm Modeling with GPU Parallel Computing Technology 33

Out(patk=1...200) ∼=
11∑
i=1

G(fi) ∼= a0 +

11∑
i=1

3∑
j=1

aj cos(jfi)+

11∑
i=1

3∑
j=1

bj sin(jfi) (7)

In the last expression we have two groups of coefficients (sin and cosine), so
B will assume the value 2. Hence the generic genome (population at a generic
evolution stage), will be composed by 23 chromosomes, given by equation (4),
each one with 7 genes [a0, a1, a2, a3, b1, b2, b3], given by equation (5), with each
single gene (coefficient of the polynomial) in the range [−1,+1].

In the present project, the idea is to build a GA able to solve supervised crispy
classification and regression problems, typically related to an high-complexity pa-
rameter space where the background analytic function is not known, except for
a limited number of couples of input-target values, representing valid solutions
to a physical category of phenomena. A typical case is to classify astronomi-
cal objects based on some solution samples (the KB) or to predict new values
extracted by further observations. To accomplish such behavior we designed a
function (a polynomial expansion) to combine input patterns. The coefficients
of such polynomials are the chromosome genes. The goal is indeed to find the
best chromosome so that the related polynomial expansion is able to approx-
imate the right solutions to input pattern classification/regression. So far, the
fitness function for such representation consists of the training error, obtained as
absolute difference between the polynomial output and the target value for each
pattern. Due to the fact that we are interested to find the minimum value of the
error, the fitness is calculated as the complement of the error (i.e. 1-error) and
the problem is reduced to find the chromosome achieving the maximum value of
fitness.

4 The GPU-Based GAME Implementation

In all execution modes (use case), GAME exploits the polytrigo function (6),
consisting in a polynomial expansion in terms of sum of sins and cosines. Specif-
ically in the training use case, corresponding to the GA building and consolida-
tion phase, the polytrigo is used at each iteration as the transformation function
applied to each chromosome to obtain the output on the problem input dataset,
and indirectly also to evaluate the fitness of each chromosome. It is indeed one
of the critical aspects of the serial algorithm to be investigated during the par-
allelization design process.

Moreover, after having calculated the fitness function for all genetic popu-
lation chromosomes, this information must be back-propagated to evolve the
genetic population. This back and forth procedure must be replicated as many
times as it is the training iteration number or the learning error threshold, both
decided and imposed by the user at setup time of any experiment. The direct
consequence of the above issues is that the training use case takes much more
execution time than the others (such as test and validation), and therefore is the
one we are going to optimize.

34 S. Cavuoti et al.

Main design aspect approaching the software architecture analysis for the
GPU is the partition of work: i.e. which work should be done on the CPU vs.
the GPU. We have identified the time consuming critical parts to be parallelized
by executing them on the GPU. They are the generation of random chromosomes
and the calculation of the fitness function of chromosomes. The key principle is
that we need to perform the same instruction simultaneously on as much data as
possible. By adding the number of chromosomes to be randomly generated in the
initial population as well as during each generation, the total number of involved
elements is never extremely large but it may occur with a high frequency. This
is because also during the population evolution loop a variable number of chro-
mosomes are randomly generated to replace older individuals. To overcome this
problem we may generate a large number of chromosomes randomly una tan-
tum, by using them whenever required. On the contrary, the evaluation of fitness
functions involves all the input data, which is assumed to be massive datasets, so
it already has an intrinsic data-parallelism. Since CUDA programming involves
code running concurrently on a host with one or more CPUs and one or more
CUDA-enabled GPU, it is important to keep in mind that the differences be-
tween these two architectures may affect application performance to use CUDA
effectively. The function polytrigo takes about three-quarters of the total execu-
tion time of the application, while the total including child functions amounts to
about 7/8 of total time execution. This indeed has been our first candidate for
parallelization. In order to give a practical example, for the interested reader, we
report the source code portions related to the different implementation of the
polytrigo function, of the serial and parallelized cases.

C++ serial code for polytrigo function (equation 6):

for (int i = 0; i < num_features; i++) {

for (int j = 1; j <= poly_degree; j++) {

ret += v[j] * cos(j * input[i]) + v[j + poly_degree] *

* sin(j * input[i]); } }

CUDA C (Thrust) parallelized code for polytrigo function (equation 6):

struct sinFunctor { __host__ __device__

double operator()(tuple <double, double> t) {

return sin(get < 0 > (t) * get < 1 > (t)); }};

struct cosFunctor { __host__ __device__

double operator()(tuple <double, double> t) {

return cos(get < 0 > (t) * get < 1 > (t)); }};

thrust::transform(thrust::make_zip_iterator(

thrust::make_tuple(j.begin(), input.begin())),

thrust::make_zip_iterator(

thrust::make_tuple(j.end(), input.end())),

ret.begin(), sinFunctor(), cosFunctor());

Genetic Algorithm Modeling with GPU Parallel Computing Technology 35

Noting that, while the vector v[] is continuously evolving, input[] (i.e. the ele-
ments of the input dataset) are being used in calculation of ret at each iteration
but they are never altered. We rewrite the function by calculating in advance the
sums of sins and cosines, storing the results in two vectors and then use them
in the function polyTrigo() at each iteration. This brings huge benefits because
we calculate trigonometric functions, which are those time consuming, only once
instead of at every iteration and exploit the parallelism on large amount of data
because it assumes that we have large input datasets.

From the time complexity point of view, by assuming to have as many GPU
cores as population chromosomes, the above CUDA C code portion would take
constant time, instead of polynomial time required by the corresponding C++
serial code.

5 The Experiment

In terms of experiments, the two CPU versions of GAME, the original and an op-
timized version of the serial algorithm (hereinafter serial and Opt respectively),
together with the final version for GPU (hereinafter ELGA), have been com-
pared basically by measuring their performance in terms of execution speed, by
also performing an intrinsic evaluation of the overall scientific performances. The
optimized algorithm is the serial version adapted by modifying the code portions
which are candidate to be parallelized in the final GPU release.

Initially, the tests have been organized by distinguishing between classifica-
tion and regression functional modes. By analyzing early trials, however, it re-
sulted that the performance growth was virtually achieved in both cases. So far,
we limit here the discussion details to a classification experiment, done in the
astrophysical context.

The scientific problem used here as a test bed for data mining application of
the GAME model is the search (classification) of Globular Cluster (GC) pop-
ulations in external galaxies [2]. This topic is of interest to many astrophysical
fields: from cosmology, to the evolution of stellar systems, to the formation and
evolution of binary systems.

The dataset used in this experiment consists in wide field HST observations
of the giant elliptical NGC1399 in the Fornax cluster, [5]. The subsample of
sources used to build our Base of Knowledge, to train the GAME model is
composed by 2100 sources with all photometric and morphological information,
[2]. Finally, our classification dataset consisted of 2100 patterns, each composed
by 11 features (including the two targets, corresponding to the classes GC and
not GC used during the supervised training phase).

The performance was evaluated on several hardware platforms. We compared
our production GPU code with a CPU implementation of the same algorithm.
The benchmarks were run on a 2.0 GHz Intel Core i7 2630QM quad core CPU
running 64-bit Windows 7 Home Premium SP1. The CPU code was compiled
using the Microsoft C/C++ Optimizing Compiler version 16.00 and GPU bench-
marks were performed using the NVIDIA CUDA programming toolkit version

