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Preface 
 
Human beings have always been fascinated by nature and especially by biological diversity and 
their evolutionary process. This has resulted into inspirations drawn from natural or biological 
systems, and phenomenon, for problem solving and has seen an emergence of a new paradigm of 
computation known as Natural Computing with Bio-inspired Computing as its subset. The 
widely popular methods, e.g., evolutionary computation, swarm intelligence, artificial neural 
networks, artificial immune systems, are just some examples in the area. Such approaches are of 
much use when we need an imprecise, inaccurate but feasible solution in a reasonable time as 
many real-world problems are too complex to be dealt using traditional methods of finding exact 
solutions in a reasonable time. Therefore, bio-inspired approaches are gaining popularity as the 
size and complexity of the real-world problems require the development of methods which can 
give the solution within a reasonable amount of time rather than an ability to guarantee the exact 
solution. Bio-inspired Computing can provide such a rich tool-chest of approaches as it tends to 
be, just like its natural system counterpart, decentralized, adaptive and environmentally aware, 
and as a result have survivability, scalability and flexibility features necessary to deal with 
complex and intractable situations. 
 
Bio-Inspired Computing: Theories and Applications (BIC-TA) is one of the flagship conferences 
on Bio-Computing bringing together the world's leading scientists from different branches of 
Natural Computing. Since 2006 the conferences have taken place at Wuhan (2006), Zhengzhou 
(2007), Adelaide (2008), Beijing (2009), Liverpool and Changsha (2010), Penang (2011).  BIC-
TA has attracted wide ranging interest amongst researchers with different backgrounds resulting 
in a seventh edition in 2012 at Gwalior. It is our privilege to have been part of this seventh 
edition of the BIC-TA series which is being hosted for the first time in India.  
 
This volume in the AISC series contains papers presented at the Seventh International 
Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012) held during 
December 14–16, 2012 at ABV-Indian Institute of Information Technology and Management 
Gwalior (ABV-IIITM Gwalior), Madhya Pradesh, India. The BIC-TA 2012 provides a unique 
forum to researchers and practitioners working in the ever growing area of bio-inspired 
computing methods and their applications to solve various real-world problems. 
 
BIC-TA 2012 attracted attention of researchers from all over the globe and we received 188 
papers related to various aspects of bio-inspired computing with umpteen applications, theories, 
and techniques. After a thorough peer-review process a total of 91 thought-provoking research 
papers are selected for publication in the Proceedings, which is in two volumes (Volume 1 and 
2). This thus corresponds to an acceptance rate of 48% and is intended to maintain a high 
standard in the conference proceedings. We hope that the papers contained in this proceeding 
will serve the purpose of inspiring more and more researchers to work in the area of bio-inspired 
computing and its application. 
 
The editors would like to express their sincere gratitude to the authors, plenary speakers, invited 
speakers, reviewers, and members of international advisory committee, programme committee 
and local organizing committee. It would not have been possible to come out with the high 
quality and standard of the conference as well as this edited Proceeding without their active 
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participation and whole hearted support. It would not be fair on our part if we forget to mention 
special thanks to the ABV – Indian Institute of Information Technology and Management 
Gwalior (ABV-IIITM Gwalior) and its Director Prof. S. G. Deshmukh for providing us all the 
possible help and support including excellent infrastructure of the Institute to make this 
conference a big success. We express our gratitude to the Department of Mathematics and 
Computer Science, Liverpool Hope University, Liverpool, UK headed by Prof.  Atulya  Nagar  for  
providing us much valued and needed support and guidance. Finally, we would like to thank all 
the volunteers; their untiring efforts in meeting the deadlines and managerial skills in managing 
the resources effectively and efficiently which has ensured a smooth running of the conference. 
 
It is envisaged that the BIC-TA conference series will continue to grow and include relevant 
future research and development challenges in this exciting field of Computing.    
 
Jagdish Chand Bansal, South Asian University, New Delhi, India 
Pramod Kumar Singh, ABV-IIITM, Gwalior, India 
Kusum Deep, Indian Institute of Technology, Roorkee, India 
Millie Pant, Indian Institute of Technology, Roorkee, India 
Atulya K. Nagar, Liverpool Hope University, Liverpool, UK 
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Stochastic Algorithms for 3D Node Localization
in Anisotropic Wireless Sensor Networks

Anil Kumar, Arun Khosla, Jasbir Singh Saini, and Satvir Singh

Abstract This paper proposes two range based 3D node localization algorithms
using application of Hybrid Particle Swarm Optimization (HPSO) and Biogeogra-
phy Based Optimization (BBO) for anisotropic Wireless Sensor Networks (WSNs).
Target nodes and anchor nodes are randomly deployed with constraints over three
layer boundaries. The anchor nodes are randomly distributed over top layer only
and target nodes over middle and bottom layers. Radio irregularity factor, i.e., an
anisotropic property of propagation media and an heterogenous property (different
battery backup statuses) of devices are considered. PSO models provide fast but
less mature convergence whereas the proposed HPSO algorithm provides fast and
mature convergence. Biogeography is based upon the collective learning of geo-
graphical allotment of biological organisms. BBO has a new comprehensive energy
based on the science of biogeography and apply migration operator to share selec-
tive information between different habitats, i.e., problem solutions. Due to size and
complexity of WSN, localization problem is articulated as an NP-hard optimization
problem . In this work, an error model in a highly noisy environment is depicted for
estimation of optimal node location to minimize the location error using HPSO and
BBO algorithms. The simulation results establish the strength of the proposed algo-
rithms by equating the performance in terms of the number of target nodes localized
with accuracy, and computation time. It has been observed that existing sensor net-
works localization algorithms are not significant to support the rescue operations
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involving human lives. Proposed algorithms are beneficial for rescue operations too
to find out the accurate location of target nodes in highly noisy environment.

Key words: Wireless Sensor Networks, Biogeography Based Optimization, Hybrid
Particle Swarm Optimization, Anisotropic Network

1 Introduction

The WSNs play an important role in our society, as they have become the archetype
of pervasive technology. WSNs consist of an array of sensors, either of same or di-
verse types, interconnected by communication network. Central aims of the sensor
networks admit ease of deployment, reliability, accuracy, flexibility, cost and effec-
tiveness . Sensors perform routing function to create single or multi-hop wireless
networking to convey data from one to other sensor nodes. The rapid deployment,
self-organization and fault-tolerance characteristics of WSN make them promising
for a number of military and civilian applications [1, 2, 3]. In most of the applica-
tions, main role of a WSN is to detect and report events which can be meaningfully
ingested and reacted to only if the exact location of the event is known. The locations
of sensor nodes are often needed when identifying where the collected information
comes from. The determination of coordinates of the sensors is one of challenging
problems and is referred to as the localization problem, in WSNs.

Localization techniques are employed to estimate the location of the sensor nodes
where coordinates are not known in a network (termed as target nodes) using avail-
able a priori knowledge of positions of typically a few specific sensor nodes called
anchors, based on inter-sensor parameters/measurements such as connectivity dis-
tance, Time of Arrival (TOA), Time Difference of Arrival (TDOA), Angle of Arrival
(AOA), etc. [4, 5].

WSN localization is a two-phase process, i.e., ranging and position estimation
process. 2D localization assumptions are violated in underwater, atmospheric and
space applications where height of the network can be significant and nodes are dis-
tributed over a three-dimensional (3D) space [6]. For example, underwater ad hoc
sensor networks, which are 3 dimensional, have attracted a lot of attention recently
[6, 7]. In underwater sensor networks, nodes may be deployed at different depths of
an ocean and thus the network becomes three-dimensional. Better weather forecast-
ing and climate monitoring can be done by deploying three-dimensional networks
in the atmosphere.

This paper proposes the application of HPSO and BBO algorithms for range
based 3D node localization in anisotropic WSNs. Both algorithms performed better
in terms of number of nodes localized, localization accuracy and computation time.
Nodes are randomly deployed with constraints over three layer boundaries. How-
ever, the anchor nodes are randomly distributed over top layer only and target nodes
over lower layers beneath. Radio irregularity factor i.e. anistropic properties of prop-
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agation media (background noise and environmental factors) and an heterogenous
properties (different battery backups) of devices are considered.

The rest of the paper is organized as follows: Literature Survey on WSN Lo-
calization is presented in Section II. Section III ushers the readership into a gentle
overview of PSO and BBO algorithms used for localization in this work. This is
followed with implementation of above said algorithms in section IV. Section V
presents simulation results and comparative study. Finally, section VI presents con-
clusions and makes a acoustic projection on potential future research paths.

2 Literature Survey

A detailed survey of the relevant literature is available in [8, 9, 10, 11]. An effi-
cient localization system with Accurate Positioning System (APS) extends the GPS
capabilities to non-GPS nodes in ad hoc networks as anchors flood their location
information to all nodes in the networks proposed in [12]. Then each target node
performs a triangulation to three or more anchors to find its position. Node localiza-
tion accuracy is improved by measuring anchor distances from their neighbors by
introducing a refinement phase [13]. The issue of error accumulation is addressed
in [14] through Kalman filter based least square estimation in [15, 16] to simultane-
ously locate the position of all sensor nodes. Node localization problem is addressed
using convex optimization based on semidefinite programming. The semidefinite
programming approach is further extended to nonconvex inequality constraints [17].
In [18], the gradient search technique demonstrates the use of a data analysis tech-
nique called multidimensional scaling (MDS) in estimating the position of unknown
nodes. The algorithm localizes an individual patch by first computing all pair wise
shortest paths between sensors in the patch. Then it applies MDS to these distances
to get an initial layout. Finally, an absolute map is obtained by using the known
node positions. These techniques work well with few anchors and reasonably high
connectivity.

Soft computing plays a crucial role in optimization problems. WSN is treated
as multi-modal and multidimensional optimization problem and addressed through
population based stochastic techniques. A few GA-based node localization algo-
rithms are presented in [19, 20, 21], that estimate optimal node locations of all one-
hop neighbors. Simulated Annealing Algorithm (SAA) and GA based two phase
centralized localization scheme is presented in [22]. PSO-based algorithm is pro-
posed in [23, 24] to minimize the localization error. In [25], two intelligent local-
ization schemes for WSNs are introduced for range-free localization, which utilize
received signal strength (RSS) from the anchor nodes. In the first scheme, the edge
weight of each anchor node is separately calculated and combined to calculate the
location of sensor nodes. Fuzzy Logic System (FLS) is used to model edge weights
and further optimized by the GA. In the second scheme, the localization is approxi-
mated as a single problem where the entire sensors’ locations from the anchor node
signals are mapped by a Neural Network (NN) [26]. In [27] a two-objective evolu-
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tionary algorithm which takes at the same time into account, both the localization
accuracy and certain topological constraints induced by connectivity are considered
during the evolutionary process, using metaheuristic approach, namely Simulated
Annealing (SA), is proposed. An empirical study of the performance of several vari-
ants of the guiding functions and several metaheuristic are used to solve real Local-
ization Distance (LD) problem presented in [23]. Each target node is localized under
imprecise measurement of distances from three or more neighboring anchors/settled
nodes. The methods proposed in this paper have following advantages:

1. There is better trade off between localization accuracy and fast convergence in
highly noisy environments.

2. Energy efficiency of networks increased, due to minimum use of hardware (min-
imum number of anchor nodes)

3. Scalability for large scale deployment is possible.

3 Stochastic Algorithms (HPSO and BBO) for WSN Localization

Widespread acceptance of bio-inspired algorithms is credited to their correctness,
and their fair computational load [23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35]. To get
better and fast solution, an improved variant of the PSO, i.e., HPSO, and a recent
optimization algorithm, i.e., BBO is applied for range-based distributive node local-
ization in this paper. Ease of implementation and fast convergence are the qualities
of global best PSO; however, it is likely to get trapped in local optima that leads to
pre-matured convergence. The proposed HPSO and BBO algorithms provide ma-
tured convergence and better accuracy as compared to the PSO method proposed in
[23, 24]. The following sections present an overview of HPSO and BBO.

3.1 Particle Swarm Optimization

The PSO method employs a number of practicable solutions within the search space,
called a Swarm of Particles with random initial locations. The value of the objective
function (which reflects error) corresponding to each particle location is evaluated.
These particles move in the search space obeying rules inspired by bird flocking
behavior [36, 37] to find new locations with better fitness. Each particle is induced
to move towards the best position, the particle has come across so far (pbest) and the
best position encountered by the entire swarm (gbest). To get an accurate solution,
the whole swarm is subdivided into sub-swarms and the particle with the best fitness
within the local swarm is termed as lbest. The lbest PSO model provides matured
but slow convergence, whereas, in our proposed PSO variant named HPSO, the ith
particle belonging to a sub-swarm feels collective attraction towards its past pbest
location, Pi, the locally best location within the sub-swarm, Pl , and the overall best
location Pg as explained below.
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Consider a search space is d-dimensional and ith particle in the swarm can be
represented as Xi = [xi1,xi2, . . . ,xid ] and its velocity can be represented by another
d-dimensional vector Vi = [vi1,vi2, . . . ,vid ]. Let the best position ever visited in the
past by the ith particle be denoted by Pi = [pi1, pi2, . . . , pid ]. Many a times, the whole
swarm is subdivided into smaller groups and each group/sub-swarm has its own lo-
cal best particle denoted Pl = [pl1, pl2, . . . , pld ], and an overall best particle, denoted
as Pg = [pg1, pg2, . . . , pgd ], where subscripts l and g are particle indices. The particle
iterates in every unit time according to (1) and (2):

vid = wvid + c1r1(pid− xid)+ c2r2(pgd− xid)+ c3r3(pld− xid) (1)

xid = xid + vid (2)

(The eq. (2) is dimensionally valid in unit time) The parameters w, c1, c2 and c3
termed as inertia weight, cognitive, social and neighborhood learning parameters,
respectively, and have a critical role in the convergence characteristics of HPSO.
The particles randomize the attraction with uniform random numbers r1, r2, and r3
in the range [0, 1]. The weight factor w should be neither too large, (which results in
an early convergence), nor too small, (which, on the contrary, slows down the con-
vergence process). A value of w = 0.7 and c1 = c2 = c3 = 1.494 were recommended
for fast convergence by Eberhart and Shi after experimental tests in [34].

3.2 Biogeography Based Optimization

Biogeography is the study of migration, speciation, and extinction of species, that
has often been considered as a process which applies equilibrium in the number of
species in habitats [35, 38, 39, 40]. A habitat is an ecological space that is inhabited
by plant or animal species and which is geographically isolated from other habitats.
Each habitat is classified by Habitat Suitability Index (HSI) that is termed as fitness
in other EAs. The features that characterize the habitat are called Suitability Index
Variables (SIVs). Habitats with high HSI have a large population, high emigration
rate, µ , simply by virtue of the large number of species that migrate to other habitats.
The immigration rate, λ , is low for these habitats as these are already saturated with
species. Habitats with low HSI have high immigration, λ , and low emigration, µ ,
because of sparse population. The suitability index of habitats with low HSI is likely
to improve with the influx of species from other habitats as it is a function of its
biological diversity. However, if HSI does not increase and remains low, species in
that habitat go extinct, and this leads to additional immigration. For the purpose of
simplicity, it is safe to accept a linear relationship between a habitat HSI and its
immigration and emigration rates and, further the rates are same for all habitats.
The immigration and emigration rates depend upon the number of species in the
habitats. The values of immigration and emigration rates are respectively given as:
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λ = I
(

1− k
n

)
(3)

and
µ =

E
n

(4)

where I is the maximum possible immigration rate; E is the maximum possible
emigration rate (I is not necessarily equal to E); k is the number of species of the kth
individual and n is the number of species and Smax is maximum number of species
in a habitat. For a pseudo-code of the algorithm, one may refer to [35].

4 HPSO and BBO Based Node Localization

The main objective in WSN localization is to find out the coordinates of maximum
number of target nodes by using M anchor nodes with range-based distributed tech-
nique. To estimate coordinates of N target nodes, the process followed is as below:

1. N Target nodes are randomly deployed over middle layer and bottom layer and
M anchor nodes are randomly deployed at the top layer. Each target node and
anchor node has their transmission range R. Anchor nodes compute their location
awareness and transmit their coordinates. The nodes, which get settled at the
end of iteration, serve as pseudo anchors or as reference nodes during the next
iteration and behave like anchors.

2. The node that falls within transmission range of four or more anchors is consid-
ered as localizable node.

3. Each localizable node measures its distance from each of its neighboring an-
chors. The distance measurements are corrupted with gaussian noise, ni, due to
environment consideration and due to DOI. A node estimates its distance from
ith anchor as d̂i = [di +ni] where di is actual distance given by (5)

di =
√

(xi− xai)2 +(yi− yai)2 +(zi− zai)2 (5)

whereas (xi,yi,zi) is the location of the target node and (xai,yai,zai) is the loca-
tion of the ith anchor node in the neighborhood. The Gaussian assumption for
range measurement is valid on practical experimental result of [41] and, there-
fore, localization results depend on the noise variance, σ2

d , too.
4. HPSO and BBO-based two separate case studies are conducted, where each lo-

calizable target node runs HPSO and BBO algorithms seperately to localize it-
self. Both HPSO and BBO find the coordinate (x,y,z) that minimize the objective
function that represents the error defined in (6).

f (x,y,z) =
1
M

M

∑
i=1

(
√

(x− xi)2 +(y− yi)2 +(z− zi)2− d̂i) (6)
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where M ≥ 4 ( 3D location of a node needs minimum 4 anchors) is the number
of anchors within transmission range, R, of the target node.

5. HPSO and BBO evolve the optimal location of target nodes, i.e., (xi,yi,zi) by
minimizing the error function (6).

6. After coordinates of all localizable nodes (say, NL) are determined, the to-
tal localization error is computed as the mean of square of distances of com-
puted node coordinates (xi,yi,zi) and the actual node coordinates (Xi,Yi,Zi), for
i = 1,2, . . . ,NL determined for both cases of HPSO and BBO, as in (7):

El =
1

NL

L

∑
i=1

(
√

(xi−Xi)2 +(yi−Yi)2 +(zi−Zi)2) (7)

7. Steps 2 to 6 are repeated until all target nodes get localized or no more nodes can
be localized. The performance of the localization algorithm is based on El and
NNL, where NNL = [N−NL] is the number of nodes that could not be localized.
Lesser the value of NNL and El , the better the performance is.

As the iterations progress, the number of localized nodes increases. This in-
creases the number of references available for already localized nodes. A node that
localizes using just four references in an iteration k may have more references in
iteration k + 1. This decreases the probability of the flip ambiguity. On the other
hand, if a node has more references in iteration k + 1 than in iteration k, the time
required for localization increases, to reduce the time and energy consumption we
considered the nearest four anchor nodes/ pseudo nodes to localize each of the un-
localized nodes. It has been observed from implementations of the above proposed
algorithms that the maximum number of anchor nodes can be safely restricted to
eight, with a view to minimize the hardware cost, increase the network scalability
and increase energy efficiency of the network.

5 Simulation Results and Discussion

The WSN localization simulations are conducted using HPSO and BBO in MAT-
LAB environment. 20 target nodes are deployed over middle layer and 20 target
nodes are deployed over bottom layer (thus 40 target nodes) and 10 anchor nodes
are randomly deployed at top layer of sensor field of 10× 10 l units. Each anchor
has a transmission range of R = 4 units. Other strategic settings are specific to HPSO
and BBO algorithms as discussed below:

5.1 HPSO based node localization

In the proposed framework, each target node that can be localized runs HPSO algo-
rithm to localize itself. HPSO parameters for node localization are fixed as:
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1. Population size = 20
2. Max iteration = 100
3. Noise variance (σ2

d ) = 0.02, 0.06 and 0.08 (for three sets of simulation experi-
ments).

4. DOI = 0.01
5. Distance between middle and each of top and bottom layers = 2, 2.5 and 3m (for

three sets of simulation experiments).

To localize each node, HPSO runs thirty tials (each trials consisting of 100 itera-
tions) with Gaussian noise. Average of total localization errors defined in (6) for all
30 trials are computed.

5.2 BBO based node localization

For each target node that can be localized, a BBO algorithm is run. BBO strategy
parameters for node localization are taken as:

1. Population size = 20
2. Max iteration = 100
3. Probability of mutation = 0.05
4. Noise variance (σ2

d ) = 0.02, 0.06 and 0.08 (for three sets of simulation experi-
ments).

5. DOI = 0.01
6. Distance between middle and each of top and bottom layers = 2, 2.5 and 3m (for

three sets of simulation experiments).

Thirty trials (each trials consisting of 100 iterations) experiment of BBO based
localization is conducted with Gaussian noise. Average of total localization error
defined as fitness function in (6) for all 30 trials is computed and minimized using
BBO algorithm.

Both the proposed algorithms are stochastic; so, one can’t expect the same solu-
tion in all trials even with identical deployment. This is the reason why the results
of 30 trial runs are averaged. The initial deployment is random, so, the number of
localizable nodes in each iteration is not expected to be the same, which makes the
total computing time variable.

The actual nodes, anchors locations and coordinates estimated by PSO (imple-
mentation parameters are same as HPSO, except the division of swarm into sub
swarm, i.e., lbest parameter), HPSO and BBO in a trial run are shown in Fig. 1.3.
The distance between actual nodes and estimated nodes is shown in Fig. 2. It has
been observed that performance of both the algorithms depends upon the gaussian
noise level; lower the EL more the localized nodes. It can be observed that PSO re-
quires less memory and gives fast convergence but yields less accuracy. Proposed
HPSO algorithm gives better accuracy and fast convergence. BBO gives better ac-
curacy than HPSO, however, convergence is significantly slower than for HPSO. A
choice between HPSO and BBO is dependent upon the trade off between accuracy
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(a) PSO

 

(b) HPSO

 

(c) BBO

Fig. 1 Node localizations with different stochastic algorithms

Anisotropic Wireless Sensor Networks 9



10

 

Fig. 2 Distance between actual Node and estimated Node with different stochastic algorithms

and fast convergence. Each point in the simulation results after 30 repetitions of
experiments performed on 30 independent configurations.

Table 1 Simulation results of 30 trial runs for comparison of PSO, HPSO and BBO based WSN
node location

   
         

         
       

SAs 

 

Mean of No. of 

un-localized 

node (NNL ) 

Mean 

Error 

(EL ) 

Total 

Computing 

Time (sec) 

Mean of No. of  

un-localized 

node (NNL ) 

Mean 

Error 

(EL) 
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Computing  

Time(sec) 

Mean of No. of  

un-localized 

node (NNL ) 

Mean 

Error 

(EL) 

Total 

Computing  

Time(sec) 

PSO 1.0924 0. 03078 75.006 1.027 0.02018 56.721 

 

0.862 

 

0.00951 

 

32.70 

HPSO 1.0493 0.01594 61.3870 0.749 0.00911 39.692 

 

0.437 

 

0. 00219 

 

27.06 

BBO 1.0379 0.01483 80.8421 0.482 0.00353 73.154 

 

0.371 

 

0.00109 

 

49.38 

 

The Gaussian noise is a crucial parameter for distance measurements, which in-
fluences the localization accuracy. It is observed that accuracy decreases as noise
increases (mean error EL increases as σd increases). The dependence of mean error
(EL) on Gaussian noise variance (σd) is shown in Fig. 3. The localization algorithms
discussed are iterative and the number of localized nodes increases with each iter-
ation. The anchor node density improves the performance of localizability of the
target node that can be observed in Fig. 4. It can be seen in Fig. 4 that with 4 anchor
nodes (minimum 4 anchor nodes are required to get 3D coordinates of the target
node), the percentage of localized target node increases sharply. It can also be no-
ticed that as the number of anchor nodes increases, the percentage of localized nodes
increases as shown in Fig. 4. The implemented algorithms provide clear insight into
the cost trade-off between a WSN with all target nodes and anchor nodes equipped
with GPS devices. As shown in Fig. 4, with 10 anchor nodes almost 100 percent

A. Kumar et al. 
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Fig. 3 Error Vs Noise variance (standard deviation)

 

Fig. 4 Number of anchors Vs localized nodes

target nodes are localized. Simulation result (refer to Table 1) of Target Nodes = 40,
transmission range = 4 unit, Gaussian noise = 0.02, field size = 10x10 units show
that 10 GPS enabled anchor nodes can localize all the 40 target nodes. This results
in about 75-80 percent saving in cost of GPS hardware. It is noticed that beyond a
particular threshold, the effect of anchors becomes negligible as shown in Fig. 4.

5.3 Effect of Distance between Layers

The distance between the layers is varied keeping the radio range constant. The
inter-layer spacing affects the success rate (in percentage) as shown in Table 2. It
has been noticed from the Table 2 that HPSO and BBO based localization algorithms
have better success rate as compared to PSO based localization algorithm.

Anisotropic Wireless Sensor Networks
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Table 2 Effect on success rate due to distance between layers

Max. Radio 

Range 

Distance Between 

Layers 

Success Rate 

PSO HPSO BBO 

4 2.0 90.1 92.4 94.6 

4 2.5 86.2 88.7 91.4 

4 3.0 84.7 87.1 90.2 

4 3.5 82.9 85.8 88.1 

4 4.5 81.3 83.4 86.2 

6 Conclusion and Future Scope

Stochastic range-based distributed node localization algorithms namely HPSO and
BBO have been presented. The proposed algorithms have better accuracy and fast
convergence in highly noisy (DOI = 0.01)environment. The HPSO-based localiza-
tion algorithm determines the accurate coordinates quickly, whereas BBO-based
localization algorithm finds the coordinate of the nodes more accurately. The choice
between the two algorithms depends upon the trade-off between accuracy and the
fast convergence. The proposed algorithms also reduce the number of transmissions
to the base station (nearest 4 anchor nodes/pseudo nodes are selected to localize
the target nodes), which helps the node to conserve more energy, so, the node can
perform for longer periods. This paper, through extensive simulations, emphasizes
that as iterations progress, more nodes get settled and require few anchors to find the
coordinates of the target nodes. The proposed application is beneficial for the rescue
operations to find out the accurate location of target nodes in highly noisy environ-
ment. Further, the proposed algorithms may be implemented for range-free local-
ization and a comparison can be made for energy awareness. A hybrid stochastic
algorithm may be proposed to achieve both more accuracy and faster convergence.
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An Evaluation of Classification Algorithms
Using Mc Nemar’s Test

Betul Bostanci and Erkan Bostanci

Abstract Five classification algorithms namely J48, Naive Bayes, Multilayer Per-
ceptron, IBK and Bayes Net are evaluated using Mc Nemar’s test over datasets
including both nominal and numeric attributes. It was found that Multilayer Percep-
tron performed better than the two other classification methods for both nominal and
numerical datasets. Furthermore, it was observed that the results of our evaluation
concur with Kappa statistic and Root Mean Squared Error, two well-known metrics
used for evaluating machine learning algorithms.

Key words: Classifier Evaluation, Classification algorithms, Mc Nemar’s test

1 INTRODUCTION

Evaluating the performance of machine learning methods is as crucial as the al-
gorithm itself since this identifies the strengths and weaknesses of each learning
algorithm. This paper investigates the usage of Mc Nemar’s test as an evaluation
method for machine learning methods.

Mc Nemar’s test has been used in different studies in previous research. Diet-
terich [1] examined 5 different statistical tests including Mc Nemar’s test to identify
how these tests differ in assessing the performances of classification algorithms.
A similar evaluation was performed on a large database by Bouckaert [2]. Dem-
sar [3] has evaluated decision tree, naive bayes and k-nearest neighbours methods
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using other non-parametric tests including ANOVA (ANalysis Of VAriance ) [4]
and Friedman test [5, 6].

Other studies have evaluated classifiers using this test over a large set but our
method differs in that we use a different criterion that compares how the individual
instances are classified and how this is reflected in the whole dataset.

Five different machine learning methods namely J48 (Decision Tree), Naive
Bayes [7], Multilayer Perceptron [7] IBK [8] and Bayes Net [9] were used in the
experiments. WEKA [10] was used to obtain the classification results of these al-
gorithms. These classification methods are used to classify samples from different
datasets. Later, the classification results are analyzed using a non-parametric test in
order to identify how a pair of learning methods differ from each other and which
of the two performs better.

The rest of the paper is structured as follows: Section 2 presents the nominal
and numeric datasets used in the experiments. Section 3 introduces Mc Nemar’s test
which is the main evaluation method proposed in this study followed by Section 4
where the experimental design is presented. Section 5 presents Mc Nemar’s test
results and compares them with two conventional evaluation criteria. Finally, the
paper is drawn to a conclusion in Section 6.

2 DATASETS

In order to perform a fair evaluation, a relatively large number of datasets obtained
from UCI Machine Learning Repository [11] are used. The datasets are selected
from the ones including nominal (Table 1) and numeric data (Table 2).

Table 1 Nominal Datasets
Dataset Number of Instances Number of Attributes Number of Classes

Car 1728 7 4
Nursery 12960 9 5

Tic-Tac-Toe 958 10 2
Zoo 101 18 7

Table 2 Numeric Datasets
Dataset Number of Instances Number of Attributes Number of Classes
Diabetes 768 9 2

Glass 214 10 7
Ionosphere 351 35 2

Iris 150 5 3
Segment-Challenge 1500 20 7

Waveform-5000 5000 41 3
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3 Mc NEMAR’S TEST

Mc Nemar’s test [12, 13] is a variant of χ2 test and is a non-parametric test used to
analyse matched pairs of data. According to Mc Nemar’s test, two algorithms can
have 4 possible outcomes arranged in a 2× 2 contingency table [14] as shown in
Table 3.

Table 3 Possible results of two algorithms [13]

Algorithm A failed Algorithm A succeeded
Algorithm B failed N f f Ns f

Algorithm B succeeded N f s Nss

N f f denotes the number of times (instances) when both algorithms failed and Nss
denotes success for both algorithms. These two cases do not give much information
about the algorithms’ performances as they do not indicate how their performances
differ. However, the other two parameters (N f s and Ns f ) show cases where one of the
algorithms failed and the other succeeded indicating the performance discrepancies.

In order to quantify these differences Mc Nemar’s test employs z score (Equa-
tion 1).

z =
(|Ns f −N f s|−1)√

Ns f +N f s
(1)

z scores are interpreted as follows: When z = 0, the two algorithms are said to
show similar performance. As this value diverges from 0 in positive direction, this
indicates that their performance differs significantly. Furthermore, z scores can also
be translated into confidence levels as shown in Table 4.

Table 4 Confidence levels corresponding to z scores for one-tailed and two-tailed predictions [13]

z score One-tailed Prediction Two-tailed Prediction
1.645 95% 90%
1.960 97.5% 95%
2.326 99% 98%
2.576 99.5% 99%

Following the table, it is worth mentioning that One-tailed Prediction is used to
determine when one algorithm is better than the other where Two-tailed Prediction
shows how much the two algorithms differ.

Mc Nemar’s test is known to have a low Type-I error which occurs when an
evaluation method detects a difference between two learning algorithms when there
is no difference [1].

An Evaluation of Classification Algorithms Using Mc Nemar’s Test 17



4 EVALUATION CRITERION

By adopting the Mc Nemar’s test to evaluate classification algorithms, the following
criterion is defined: An algorithm is regarded as “successful” if it can identify the
class of an instance correctly. Conversely, it is regarded as “failed” when it performs
an incorrect classification for an instance.

Using this criterion, the z scores are calculated using Mc Nemar’s test for the five
classification algorithms. All the algorithms were used with their default parameters
as parameter tuning may favor one algorithm to produce better results.

The null hypothesis (H0) for this experimental design suggests that different clas-
sifiers perform similarly whereas the alternative hypothesis (H1) claims otherwise
suggesting that at least one of the classifiers performs differently as shown in Equa-
tion 2.

H0 : C1 = C2 = C3 = C4 = C5
H1 : ∃Ci : Ci 6= C j,(i, j) ∈ (1,2,3,4,5), i 6= j (2)

At the end of the experiment, the z scores will indicate whether we should accept
H0 and reject H1 or vice versa. In order to calculate the z scores, the classification
results of the three classifiers must be identified for each individual instance.

This operation is performed for all instances in the given datasets. In WEKA,
there are two options to see whether an instance is correctly classified or not. The
first option is the graphical one (shown in Figure 1 with the squares while crosses
denote correct classifications). The second option to show the incorrect classifica-
tions is via the “Output predictions” option of the classifier which displays a “+” in
the output next to the instance which has been incorrectly classified.

10-fold cross-validation is used in the evaluation which works as folllows: First
the data is separated into 10 sets each having n/10 instances. Then, the training is
performed using 9 of these sets and testing is performed on the remaining 1 set. This
process is repeated 10 times to consider all of the subsets created and the final result
for the accuracy is obtained by taking the average of these iterations.

The first option is quite useful to see the result graphically, however in order
to calculate the number of correct and incorrect classifications by the classifiers,
one needs to export these results into a spreadsheet (e.g. Excel). For this reason,
the second method was used to calculate number of instances where the classifiers
succeeded and failed. Using these figures, the z scores were calculated using Equa-
tion 1.

In order to decide which classifier performed better, Ns f and N f s values for two
classifiers are examined. For example, classifier A is said to perform better than
classifier B if Ns f is larger than N f s according to Table 3.
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Fig. 1 Visualization of Classification Errors in WEKA

5 RESULTS

This section presents the results of the experiment. Results for the Mc Nemar’s test
will be given first and then these results will be compared with two other evaluation
criteria namely Kappa statistic and Root Mean Squared Error (RMSE).

5.1 McNemar’s Test Results

In Tables 5 and 6, the arrowheads (←,↑) denote which classifier performed better
in the given datasets. z scores are given next to the arrowheads as a measure of how
statistically significant the results are.

By looking at the Mc Nemar’s test results for the nominal datasets (Table 5),
one can deduce that Multilayer Perceptron has produced significantly better results
than J48 and Naive Bayes classifiers (H1 is accepted with a confidence level of
more than 99.5%). J48 classifier performed better than the Naive Bayes for Nursery
and Tic-Tac-Toe datasets. For the Zoo dataset, Naive Bayes performed better than
J48 and equally to the Multilayer perceptron (H0 is not rejected.). The performance
differences between IBK and all other classifiers were not found to be statistically
significant for the Zoo dataset but for the rest of the nominal datasets, there were sig-
nificant differences. Bayes Net shows a poor performance overall except for the Zoo
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Table 5 Mc Nemar’s Test Results for Nominal Datasets
Car

Naive Bayes Multilayer Perceptron IBK Bayes Net
J48 0 ↑ 10.63 ↑ 1.62 ← 6.93

Naive Bayes ↑ 10.63 ↑ 1.62 ← 6.93
Multilayer Perceptron ← 9.82 ← 15.08

IBK ← 9.75
Nursery

Naive Bayes Multilayer Perceptron IBK Bayes Net
J48 ← 24.66 ↑ 17.32 ↑ 34.89 ← 24.64

Naive Bayes ↑ 34.89 ↑ 31.68 0
Multilayer Perceptron ← 12.09 ← 34.87

IBK ← 31.66
Tic-tac-toe

Naive Bayes Multilayer Perceptron IBK Bayes Net
J48 ← 8.44 ↑ 10.06 ↑ 15.73 ← 8.56

Naive Bayes ↑ 15.73 ← 0.70 ← 0.70
Multilayer Perceptron ← 15.90 ← 15.90

IBK 0
Zoo

Naive Bayes Multilayer Perceptron IBK Bayes Net
J48 ← 0.67 ↑ 1.23 0 ↑ 0.5

Naive Bayes 0 0 0
Multilayer Perceptron 0 0

IBK 0

dataset where it performed better than J48 although the result was not statistically
significant.

Many differences in the classification performance are noticeable in the numeric
dataset results (Table 6). For the Glass and Segment-Challenge datasets J48 has
given better classification performance than Naive Bayes. For the former dataset,
the Multilayer Perceptron performed equally with J48 and Naive Bayes produced a
poorer classification result than these two. IBK and Bayes Net shows better perfor-
mance over J48, Naive Bayes and Multilayer Perceptron, however there was no sta-
tistically significant performance difference between these two classification meth-
ods.

It is interesting to see that the first three (J48, Naive Bayes and Multilayer Per-
ceptron) classifiers performed similarly on the Ionosphere dataset (H0 is not rejected
for all pairs.). Some differences can noticeable between these classifiers and Bayes
Net however the results are not significant (z = 0.75 for Naive Bayes and Multilayer
Perceptron) A similar result is also visible when the Iris dataset is consided since
the values are quite close to zero. For the Diabetes dataset, Naive Bayes showed
better performance over J48 yet the difference was not very significant for the latter
(with a confidence level less than 95%) whereas Naive Bayes performs significantly
better than J48 for the Waveform-5000 dataset.

We can also see that the Multilayer Perceptron did not produce good results for
the Ionosphere dataset where a relatively large number of attributes are present. This
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Table 6 McNemar’s Test Results for Numeric Datasets
Diabetes

Naive Bayes Multilayer Perceptron IBK Bayes Net
J48 ↑ 1.61 ↑ 0.96 ← 0.56 ↑ 0.26

Naive Bayes ← 0.56 ← 3.40 ← 1.29
Multilayer Perceptron ← 2.97 ← 0.59

IBK ↑ 2.16
Glass

Naive Bayes Multilayer Perceptron IBK Bayes Net
J48 ← 4.07 0 ↑ 4.07 ↑ 0.97

Naive Bayes ↑ 4.07 ↑ 5.05 ↑ 5.24
Multilayer Perceptron ↑ 0.95 ↑ 0.97

IBK 0
Ionosphere

Naive Bayes Multilayer Perceptron IBK Bayes Net
J48 0 0 0 ← 1.05

Naive Bayes 0 ← 2.71 ← 0.75
Multilayer Perceptron ← 2.71 ← 0.75

IBK ↑ 1.37
Iris

Naive Bayes Multilayer Perceptron IBK Bayes Net
J48 0 ↑ 0.41 ↑ 0.5 ← 1.51

Naive Bayes ↑ 0.5 0 ← 1.51
Multilayer Perceptron ← 1.16 ← 2.00

IBK ← 1.23
Segment

Naive Bayes Multilayer Perceptron IBK Bayes Net
J48 ← 12.95 ↑ 1.69 ↑ 14.22 ← 6.58

Naive Bayes ↑ 14.22 ↑ 13.48 ↑ 8.53
Multilayer Perceptron ← 0.86 ← 7.92

IBK ← 7.05
Waveform-5000

Naive Bayes Multilayer Perceptron IBK Bayes Net
J48 ↑ 6.90 ↑ 12.40 ← 1.84 ↑ 6.71

Naive Bayes ↑ 5.78 ← 8.77 ← 0.54
Multilayer Perceptron ← 13.89 ← 6.05

IBK ↑ 8.59

lower performance can be due to an underfitting problem as the default parameters
were used without any parameter tuning.

5.2 Comparison with Other Evaluation Criteria

Mc Nemar’s test result showed that there are significant discrepancies in the perfor-
mances of the classifiers. Additional experiments were carried out to see how the

An Evaluation of Classification Algorithms Using Mc Nemar’s Test 21



results for Mc Nemar’s test conform with other evaluation criteria namely Kappa
Statistic and Root Mean Squared Error.

5.2.1 Kappa Statistic

Kappa Statistic is a measure of the agreement between the predicted and the actual
classifications in a dataset [15]. For this reason, we expect a higher value for a
classifier which has more overlapping predictions and observations.

By looking at the nominal datasets in Figure 2, we see that Multilayer Perceptron
has the highest value in 3 out of 4 datasets. J48 is better than Naive Bayes except for
the Zoo dataset (Figure 2(d)). IBK shows good performance in all nominal datasets,
although the poorest performance can be seen in the Car dataset.

(a) Car (b) Nursery (c) Tic-Tac-Toe

(d) Zoo

Fig. 2 Kappa Statistics for Nominal Datasets. NB: Naive Bayes, MP: Multilayer Perceptron, BN:
Bayes Net

The ranking between J48 and Multilayer Perceptron changes significantly for the
Glass and Segment-Challenge datasets for the numeric datasets in Figure 3. IBK
has a good performance in these two datasets (Kappa = 0.60 and Kappa = 0.95 re-
spectively). Naive Bayes produced good results only for the Diabetes dataset in this
group. We can also say the Bayes Net achieves higher classification performance
for the numeric datasets than the nominal datasets.
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(a) Diabetes (b) Glass (c) Ionosphere

(d) Iris (e) Segment-Challenge (f) Waveform-5000

Fig. 3 Kappa Statistics for Numeric Datasets. NB: Naive Bayes, MP: Multilayer Perceptron, BN:
Bayes Net

5.2.2 Root Mean Squared Error

Root Mean Squared Error (RMSE) [15] shows the error in the predicted and actual
classes which the instances in a dataset belong to. RMSE should have lower values
for more accurate classification results.

In nominal dataset results (Figure 4), Multilayer Perceptron had the lowest
RMSE values for Car, Nursery and Tic-Tac-Toe datasets. J48 performed better than
the Naive Bayes for the these datasets as well, while the ranking changed between
them in the Zoo dataset shown in Figure 4(d). IBK shows the worst performance
on the Diabetes and the best performance on the Zoo dataset. Bayes Net has poor
performance in Car and Tic-Tac-Toe datasets.

A first look on the results in Figure 5 reveals that the Multilayer Perceptron re-
sults in lowest RMSE values for 4 out of 6 numeric datasets. Naive Bayes has a poor
performance in Glass, Ionosphere and Segment-Challenge datasets. Naive Bayes
showed the lowest performance in all datasets of the numeric dataset results except
for the Diabetes dataset.

Table 7 show the mean results for all classifiers for the nominal and numeric
datasets. Multilayer Perceptron has the highest values for Kappa statistic and lowest
values for RMSE showing that the classification results using this classifier are ac-
curate. IBK also shows a good classification performance for nominal and numeric
data. Poor results are visible for Naive Bayes and Bayes Net.
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(a) Car (b) Nursery (c) Tic-Tac-Toe

(d) Zoo

Fig. 4 RMSE for Nominal Datasets. NB: Naive Bayes, MP: Multilayer Perceptron, BN: Bayes
Net

(a) Diabetes (b) Glass (c) Ionosphere

(d) Iris (e) Segment-Challenge (f) Waveform-5000

Fig. 5 RMSE for Numeric Datasets. NB: Naive Bayes, MP: Multilayer Perceptron, BN: Bayes
Net
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Table 7 Mean Kappa statistic and RMSE values for nominal and numeric datasets

Nominal Numeric
Kappa RMSE Kappa RMSE

J48 0.82 0.19 0.72 0.36
Naive Bayes 0.69 0.23 0.64 0.31

Multilayer Perceptron 0.97 0.08 0.75 0.25
IBK 0.94 0.17 0.68 0.32

Bayes Net 0.54 0.30 0.71 0.28

From the three evaluation criteria (Mc Nemar’s test, Kappa statistic and RMSE),
Table 8 can be used to summarize the performance difference over the nominal and
numeric datasets where + indicates performance grade. By looking at this summary
table, it is evident that the Mc Nemar’s test agrees with other evaluation criteria as an
important result of the experiments. An exception can be seen for the comparison of
Naive Bayes and J48 which is due to insignificance of the differences in Mc Nemar’s
test.

Table 8 Summary of the performances for nominal and numeric datasets

Mc Nemar’s test
J48 Naive Bayes Multilayer Perceptron IBK Bayes Net

Nominal +++ ++ +++++ ++++ +
Numeric + ++++ +++++ ++ +++

Kappa statistic
Nominal +++ ++ +++++ ++++ +
Numeric ++++ + +++++ ++ +++

RMSE
Nominal +++ ++ +++++ ++++ +
Numeric + +++ +++++ ++ ++++

6 CONCLUSION

This study employed Mc Nemar’s test in order to evaluate machine learning algo-
rithms namely J48, Naive Bayes and Multilayer Perceptron, IBK and Bayes Net. By
defining the success and failure criteria of Mc Nemar’s test as correctly or incor-
rectly identifying the class of an instance in a dataset, the experiments presented the
usage of a non-parametric test as a new method to evaluate classification algorithms.

The results showed that Multilayer Perceptron produced better results than the
other methods for both nominal and numerical data. Bayes Net was placed in the
lowest ranks for both types of data. Another interesting finding of the experiment is
that the results of the Mc Nemar’s test mostly conformed with Kappa statistic and
RMSE as a justification of method’s integrity.
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The effect of parameter tuning is considered as future research. In this case, the
classifiers will be tuned to achieve the optimal results and then the same tests can be
applied to see whether there will be any changes in the rankings.

Acknowledgements The authors would like to thank Nadia Kanwal for discussions on Mc Ne-
mar’s test.
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Permitting features in P systems generating
picture arrays

K.G. Subramanian, Ibrahim Venkat, Linqiang Pan and Atulya K. Nagar

Abstract In the area of membrane computing, the biologically inspired model
known as P system has proved to be a rich framework for studying several types
of problems. Picture array generation is one such problem for which different P
systems have been constructed in the literature. Incorporating the feature of permit-
ting symbols in the rules, array P systems are constructed here for generating picture
languages consisting of picture arrays. The advantage of this approach is that there
is a reduction in the number of membranes used in the construction, in comparison
to the existing array P system model.

Key words: Membrane Computing, P System, Picture Arrays, Permitting Features

1 Introduction

The computability model known as P system, introduced by Pǎun [10] inspired by
the structure and functioning of living cells, has turned out to be a versatile frame
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work for studying computational problems in many different fields [11]. Picture
grammar is one such area where different kinds of P systems for generating picture
languages consisting of picture arrays, have been introduced and investigated. In
[3], array P systems are introduced extending the string-objects P systems to array-
objects P systems, thereby giving a link between picture grammars and P systems.
Motivated by the study in [3], several variants of array P systems have been intro-
duced (See for example, [1, 2, 16]).

On the other hand, regulating rewriting [6] in a grammar by permitting or forbid-
ding the application of a rule based on the presence or absence of a set of symbols
is known in formal language theory. Picture grammars that use this feature of per-
mitting or forbidding symbols have also been introduced in [7, 8, 9].

Here we associate permitting symbols with rules in the regions of an array P system
[3]. We call the resulting array P system as a permitting array P system and construct
such a P system for generating picture languages consisting of picture arrays. The
advantage of this approach is that the number of membranes used in the construc-
tion is reduced when compared to array P system [3]. The problem of generation of
geometric figures such as squares, rectangles are of interest in the study of picture
grammars (see for example [21, 20]). We consider in permitting array P system, the
feature of t−communication in array P systems considered in [17] and this enables
us to generate picture arrays representing solid squares with a reduced number of
membranes in comparison to the t−communicating array P system given in [17] to
generate such solid squares.

2 Preliminaries

For notions related to array grammars and array languages, we refer to [12, 13, 20],
for notions on array P systems, we refer to [3, 16] and for notions of formal lan-
guage theory to [14, 15].

Given an alphabet V, the set of all words over V , including the empty word λ , is
denoted by V ∗ and V+ =V ∗−λ .

A picture array or simply an array in the two-dimensional plane consists of a finite
number of labelled unit squares or pixels, with the labels belonging to an alphabet
V and the unit squares not labelled with elements of V are considered to have the
blank symbol # /∈ V . An array can be formally specified by listing the coordinates
and the corresponding labels of the pixels. For example, for the T shaped array in
Figure 1, this kind of specification is given as follows:

{((0,5),a), ((1,5),a), ((2,5),a), ((3,5),a), ((4,5),a), ((5,5),a),

((6,5),a), ((7,5),a), ((8,5),a), ((9,5),a), ((10,5),a),
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((5,0),a), ((5,1),a), ((5,2),a), ((5,3),a), ((5,4),a)}

We note that only the relative positions of non-blank pixels in the array matter for
us. The non-blank labels of the T shaped array are pictorially indicated in Figure 1.

a a a a a a a a a a a
a
a
a
a
a

Figure 1: T-shaped array with equal arms

We denote by V+2 the set of all two-dimensional non-empty finite arrays over V . The
empty array is denoted by λ , and then the set of all arrays over V is V ∗2 =V+2∪{λ}.
Any subset of V ∗2 is called an array language.

The array grammars [12, 13, 20] that involve array rewriting rules are extensions
of string grammars [14, 15] to two dimensional picture arrays. We recall here the
context-free and regular types of array rewriting grammars of the isometric variety
which means that the rules preserve the geometric shape of the rewritten subarray.

An array grammar G= (N,T,S,P,#) where N,T are alphabets, N∩T = φ and S∈N
is the start symbol. The elements of the finite set N are called nonterminals and those
of T, terminals. P is a finite set of array rewriting rules of the form r : α→ β where
α and β are arrays over V ∪# satisfying the following conditions:

1. the arrays α and β have identical shapes;
2. there is at least one element of N in α;
3. the symbols of T that occur in α are retained in their respective positions in β ;
4. the application of the rule r : α → β preserves the connectivity of the rewritten

array.

For two arrays γ,δ over V and a rule r as above, we write γ ⇒p δ if δ can be
obtained by replacing with β , a subarray of γ identical to α. The reflexive and tran-
sitive closure of the relation⇒ is denoted by⇒∗.

An array grammar is called:

1. context-free, if for all the rules r : α → β , the non−# symbols in α are not re-
placed by symbol # in β and for each rule α→ β , α contains exactly one nonter-
minal with the remaining squares containing # and β contains no blank symbol
#;

2. regular, if the rules are of the following forms:

A #→ a B, # A→ B a, #
A
→ B

a
, A

#
→ a

B
, A→ B, A→ a,
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where A,B are nonterminals and a is a terminal.

The array language generated by G is

L(G) = {p | S⇒∗ p ∈ T+2}.

Note that the start array is indeed {((0,0),S)} and it is understood that this square
labelled S is surrounded by #, denoting empty squares with no labels.

We denote by AREG and ACF respectively the families of array languages gen-
erated by array grammars with regular and context-free array rewriting rules.

We now recall the basic model of a rewriting array-objects P system introduced
in [3].

An array P system (of degree m≥ 1) [3] is a construct

Π = (V,T,#,µ,F1, . . . ,Fm,R1, . . . ,Rm, io),

where: V is the alphabet of nonterminals and terminals, T ⊆ V is the terminal al-
phabet, # /∈ V is the blank symbol, µ is a membrane structure with m membranes
labelled in a one-to-one way with 1,2, . . . ,m, F1, . . . ,Fm are finite sets of arrays over
V associated with the m regions of µ , R1, . . . ,Rm are finite sets of array rewriting
rules over V associated with the m regions of µ; the array-rewriting rules (context-
free or regular) of the form A → B(tar) have attached targets here, out, in (in
general, we omit mentioning here); finally, io is the label of an elementary mem-
brane of µ which is the output membrane.

A computation in an array P system is defined in the same way as in a string rewrit-
ing P system [10] with the successful computations being the halting ones. Every
array, from each region of the system, which can be rewritten by a rule associated
with that region (membrane), should be rewritten; the rewriting is sequential at the
level of arrays which means that one rule is applied ; the array obtained by rewriting
is placed in the region indicated by the target associated with the rule used (here
means that the array remains in the same region, out means that the array exits the
current membrane and thus, if the rewriting was done in the skin membrane, then it
exits the system; (arrays leaving the system are “lost” in the environment), and in
means that the array is immediately sent to one of the directly lower membranes,
nondeterministically chosen if several exist; if no internal membrane exists, then a
rule with the target indication in cannot be used).

A computation is successful only if it stops and a configuration is reached where
no rule can be applied to the existing arrays. The result of an halting computation
consists of the arrays composed only of symbols from T placed in the output mem-
brane with label io in the halting configuration. The set of all such arrays computed
or generated by a system Π is denoted by AL(Π). The families of all array lan-
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guages AL(Π) generated by systems Π as above, with at most m membranes, with
CF and regular array-rewriting rules are respectively denoted by EAPm(CF) and
EAPm(REG).

We illustrate with an example the computation in an array P system.

Example 1. An array P system generating T shaped arrays (Figure 1) over {a} is as
follows:

Π1 = ({A,B,C,B′,C′,a},{a},#, [1[2[3 [4 ]4]3]2]1,{
AX B

C

}
, /0, /0, /0,R1,R2,R3,R4,4),

with

R1 = {# A→ A a(in),},
R2 = {B #→ a B′(in), B′ → B (out)},

R3 = {C
#
→ a

C
(out), C

#
→ a

C′
(in)},

R4 = {A→ a,B′→ a,C′→ a}.

A computation in Π1 starts with the initial array AX B
C

in region 1, with other re-

gions having no initial array. An application of the rule # A→ A a(in) grows the
horizontal arm one step on the left, after which the array is sent to region 2, due to
the target indication in in the rule. In region 2, the rule B #→ a B′(in) alone can be
applied which grows the horizontal arm one step on the right, after which the array

is sent to region 3, due to the target indication in in the rule. If the rule C
#
→ a

C
(out)

is applied in region 3, then the vertical arm grows one step down and the array is
sent back to region 2 due to the target indication out. In region 2, the primed version
of the nonterminal B is changed into B and the array is brought back to region 1

and the process can repeat. If in region 3, the rule applied is C
#
→ a

C′
(in) then the

array is sent to the output region 4 wherein all the nonterminals are changed into the
terminal a and the computation halts yielding a T shaped array over {a} with equal
arms which is collected in the language generated.

3 Permitting array P systems

We consider permitting CF (respy. regular)array rewriting rule, which is a context-
free array rewriting rules with permitting symbols. We then define a permitting array
P system that makes use of such permitting CF array rewriting rules in its regions.

If B is a subarray of A , then we denote by A \B, the array formed by the la-
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belled squares of A that are not labelled squares of B. We denote by l(A ), the
set of all symbols in the labelled squares of the array A . Note that in a CF array
rewriting rule A →B, A contains exactly one labelled square with a nonterminal
symbol as label.

A permitting CF (respy. regular) array rewriting rule is of the form (A →B, per)
where A →B is a context-free array rewriting rule and per ⊆ N with N being the
set of nonterminals of the array grammar. If per = φ , then we omit mentioning it in
the rule. For any two arrays C ,D , and a permitting CF array rule (A →B, per),
the array D is derived from C by replacing A in C by B, provided per⊆ l(C \A ).

We now introduce the notion of an array P system with permitting symbols as-
sociated with the rules in the regions.

A permitting array P system (of degree m≥ 1 (pEAPSm(CF)), is a construct

Π = (V,T,#,µ,F1, . . . ,Fm,R1, . . . ,Rm, io),

where the components V,T,#,µ,F1, . . . ,Fm, io are as in an array P system and the
rules in the sets R1, . . . ,Rm are permitting CF array rewriting rules of the form
(A →B, per) where A →B is a context-free array rewriting rule and per⊆V−T
with V −T being the set of nonterminals.

A computation in pEAPSm(CF)) is also as in an array P system except that the
application of a permitting CF array rewriting rule in any Ri,1≤ i≤m, is regulated
by the associated permitting symbols as described earlier in deriving an array from a
given array. The successful computations are the halting ones. The result of a com-
putation is the set of arrays collected in the output elementary membrane i0 in the
halting configuration.

The family of all array languages generated by systems Π as above, with at most
m membranes, with permitting array rewriting rules of type regular or CF is respec-
tively denoted by pEAPm(REG) or pEAPm(CF).

We illustrate computation in a permitting array P system with an example.

Example 2. A permitting array P system generating T shaped arrays (Figure 1) over
{a} is as follows:

Π2 = ({A,B,C,A′,B′,C ′,D,a},{a},#, [1[2]2]1,{
AX B

C

}
, /0,R1,R2,2),

with

R1 = {
(
# A→ A′ a,{B,C}

)
,
(
B #→ a B′,{A′,C}

)
,
(C

#
→ a

C ′
,{A′,B′}

)
,
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(
A′→ A,{B′,C ′}

)
,
(
B′→ B,{A,C ′}

)
,
(
C ′→C,{A,B}

)
,(

C ′→ D({in}),{A,B}
)
}

R2 = {A→ a,B→ a,D→ a}

A computation in Π2 starts with the initial array AX B
C

in region 1, with region 2

having no initial array. The rule # A→ A′ a alone is applicable as the permitting
symbols B,C are present. The application of this rule grows one step on the left, the
horizontal arm. The rule B #→ a B′ can now be applied as the permitting symbols
A′,C are present in the array. The application of this rule grows one step on the

right, the horizontal arm. Likewise the rule C
#
→ a

C ′
can then be applied growing

the vertical arm one step down. The primed versions of the nonterminals A,B,C
are changed into their original versions A,B,C due to the application of the rules
A′ → A,B′ → B,C ′ → C with the corresponding permitting symbols being present
and the process can repeat. If the rule C ′ → D is applied instead of C ′ → C, then
the array is sent to the inner region 2, due to the target indication in In region 2,
the nonterminals are changed into the terminal a with the computation coming to a
halt yielding a T shaped array over {a} with equal arms which is collected in the
language generated.

Note that the array P systems in both the examples 1 and 2, generate the same
picture language consisting of picture arrays representing T shaped figure. But the
number of membranes used is only two in example 2 where permitting symbols are
used in the rules whereas the number of membranes used in example 1 is four, where
the feature of permitting symbols is absent. Although not entirely unexpected, this
shows the power of permitting symbols in the rules in reducing the number of mem-
branes.

Theorem 1.

1. pEAPm(α)⊆ pEAPm+1(α),α ∈ {REG,CF}
2. pEAP2(REG)−EAP2(REG) 6= /0
3. pEAP2(REG)−AREG 6= /0

Proof. The statement 1 is immediate from the definition of the family pEAPm(α),α ∈
{REG,CF}.

The statement 2 can be seen as follows: The picture language L consisting of T
shaped arrays with equal arms is in the family pEAP2(REG), as seen in example 2
where a permitting array P system with two membranes generates L. But applica-
tion of regular array rewriting rules just alternating between two membranes can not
keep generating all three arms of equal length, namely the left horizontal arm, the
right horizontal arm and the vertical arm of the T shaped array, together once the
derivation reaches the ‘junction’ in the T shaped array. Hence without the feature
of permitting symbols in the rules, any basic model array P system [3] with regular
array rewriting rules will require at least three membranes to generate T.
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The statement 3 is due to the fact that no regular array grammar by the nature of
its rules can ensure that the arms are of equal length. In fact the regular array gram-
mar rules cannot generate two arms together. ut

The maximal mode or t−mode of derivation has been studied in a cooperating dis-
tributed grammar system [4] which was developed as a language-theoretic model
of distributed complex systems. In [5] the t− communication mode is brought into
string rewriting P systems [10] thereby linking cooperating distributed string gram-
mar systems and string-objects P systems. As a natural extension of the study in
[5], Subramanian et al [17] incorporated this t−mode of communication into array
P systems [3].

We now briefly recall a t−communicating array P system of type tin introduced
in [17].

A t−communicating array P system of degree m≥ 1 and of type tin,
(tEAPSm(tin,CF)), is a construct

Π = (V,T,#,µ,F1, . . . ,Fm,R1, . . . ,Rm, io),

where the components V,T,#,µ,F1, . . . ,Fm, io are as in an array P system and the
rules in the sets R1, . . . ,Rm are CF array rewriting rules of the form A →B.

The computation is done in the usual way starting with the initial arrays (if any)
in the regions. The arrays are communicated among the regions in the following
manner: If an array-rewriting rule with target indication out, is applied to an array,
then the resulting array is sent to its immediately direct upper region. If an array-
rewriting rule has no target indication, then the array to which it is applied remains
in the same region if it can be further rewritten there but if no rule can be applied
to it in that region, then it is sent to the immediately direct inner region if one such
region exists. In other words the t−mode or maximal derivation performed enforces
the in target command. If the membrane is elementary, the rewritten array remains
there. Note that the system does not have rules with target indication in. The result
of a computation is the set of arrays over T collected in the output elementary mem-
brane in the halting configuration.

The family of all array languages generated by a t−communicating array P sys-
tem of type tin Π as above, with at most m membranes, with rules of type
α ∈ {REG,CF} is denoted by tEAPm(tin,α).

The problem of generation of picture arrays representing geometric figures such
as solid squares over {a} is a problem of interest in the area of picture grammars. It
is known that the set Ss of all n× n (n ≥ 2) solid squares over a, can be generated
[21] by a regular array grammar but the number of rules required is very large. In
[17], a t−communicating array P system of type tin is given to generate it. Here we
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endow the rules of a t−communicating array P system of type tin with permitting
symbols and construct such a system to generate the set Ss of solid squares of a′s.
Such a solid square of a′s is shown in Figure 2.

a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a

Figure 2: A Solid square of a′s

A permitting t−communicating array P system of type tin and of degree m ≥ 1,
is a t−communicating array P system of degree m ≥ 1 and of type tin [17]except
that the array-rewriting rules in the regions are of the form (A →B, per) where
A →B is a context-free array rewriting rule and per ⊆ V −T with V −T being
the set of nonterminals. In a computation in the system, application of the rules to
arrays in the regions is done as in a permitting array P system and communication
of arrays from one region to another is done as in the t−communicating array P
system of type tin. As usual, a successful computation is a halting computation with
the arrays collected in the output membrane constituting the language generated.
The family of picture array languages generated by permitting t−communicating
array P systems of type tin is denoted by ptEAPm(tin,CF) or ptEAPm(tin,REG)
depending on the array rewriting rules in the system being context-free or regular.

In [17], a t−communicating array P system of type tin is given to generate the set
Ss of all n×n (n≥ 2) solid squares over a and it is known that Ss ∈ tEAP4(tin,CF)
[17] so that the number of membranes used is four and the number of rules in all
the four membranes together is 12. Here we construct a t−communicating array
P system of type tin with permitting symbols and regular array-rewriting rules to
generate the set Ss of solid squares of a′s, which requires only two membranes.

Theorem 2. Ss ∈ ptEAP2(tin,REG).

Proof. To prove the theorem, we construct a permitting t−communicating array P
system ptEAPm(tin,CF)

Π3 = ({A,B,A′,B′,C,D,C′,D′,X ,Y,a},{a},#, [1[2]2]1,{
aA
BZ

}
, /0, /0,R1,R2,2),

R1 =

{
(1)
(
A #→ a A′,{B}

)
,(2)

(
B
#
→ a

B′
,{A′}

)
, (3)

(
A′→ A,{B′}

)
,
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(4)
(
B′→ B,{A}

)
, (5)

(
B′ #→ a C,{A′}

)
,(6)

(
C′→C,{D′}

)
,

(7)
(
D′→ D,{C}

)
, (8)

(
A′

#
→ a

D
,{C}

)
,(9)

(
C #→ a C′,{D}

)
,

(10)
(

D
#
→ a

D′
,{C′}

)
,(11)

(
C #→ a X ,{D}

)
, (12)

(
D
#
→ a

Y
,{X}

)
,

(13)
(
Z #→ a Z,{X}

)
, (14)

(
Z
#
→ a

Z
,{X}

)
,

15)
(
# Z→ Z a,{X}

)
, (16)

(
#
Z
→ Z

a
,{X}

)}

R2 = {(17)X → a, (18) D→ a, (19) Z→ a}

The computation starts with the initial array in region 1. Rules (1) to (4) enable the
top border and left border to grow equally, one step at a time until the rules(5) and (8)
make the top border to turn down and the left border to turn right. The rules (6), (7),
(9), (10) make the bottom border and right border to grow equally, one step at a time
until the rule (11) is applied which makes in a correct computation the symbols D
and E to meet. This makes the rule (12) not applicable which really is an indication
of a correct computation. The remaining rules (13) to (16) enable filling up the
interior in rows and columns, until no more rule is applicable. The application of the
rules throughout the computation is guided by the permitting symbols. Due to type
tin of the system, the array moves to region 2 where all the nonterminals are changed
into the terminal a thus yielding a solid square of a′s in a halting computation. Note
that any incorrect sequence of application of the rules will result in the symbol Y
getting stuck in the array and thus not contributing anything to the language. ut

Remark 1. We note that the t − communicating array P system with context-free
array rewriting rules generating the set of solid squares of a′s given in [17] involves
four membranes whereas two membranes are enough when the system is endowed
with the additional permitting feature, with regular array rewriting rules only.

4 Conclusion

We have considered here the features of permitting symbols in the rules and t−mode
of communication in the regions of an array P system and examined the gener-
ative power of such a system. It is of interest to note that array P system with
t−communication and permitting symbols and regular array rewriting rules gen-
erates solid squares of a′s. It is possible to construct permitting t−communicating
array P systems, as done for solid squares, to generate picture arrays representing
other kinds of geometric figures such as hollow squares, solid and hollow rectan-
gles and so on. Comparison with the array P systems considered in [19] can also be
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made. Also the techniques used here can be applied to construct corresponding P
systems for triangle-tiled pictures [18].
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An ACO framework for Single Track Railway
Scheduling Problem

Raghavendra G. S. and Prasanna Kumar N

Abstract This work focus on application of ant algorithms to railway scheduling
problem. The railway scheduling problem especially on a single track is considered
to be NP hard problem with respect to number of conflicts in the schedule. The train
scheduling is expected to satisfy several operational constraints, thus making the
problem more complex. The ant algorithms have evolved as more suitable option
to solve the NP hard problem. In this paper, we propose a mathematical model to
schedule the trains that fits into ACO framework.The solution construction mech-
anism is inspired by orienteering problem. The proposed methodology has the ca-
pability to explore the complex search space and provides the optimal solution in
reasonable amount of time. The proposed model is robust in nature and flexible
enough to handle additional constraints without any modification to the model. The
model assumes that set of trains will be scheduled in a zone, that covers several
cities and they are optimized with respect to number of conflicts.

Keywords: Ant, Optimization, Railway, Schedules, Train.

1 Introduction

The train timetable generation is a tedious and time consuming task. Traditionally,
timetable is generated manually by trial and error method based on experience and
information. The advent of computer aided tools have helped the planner to come up
with the effective timetable [1,2] and to access the effectiveness in terms of robust-
ness in routing [3], revenue profitablity etc. The aim of the train scheduling problem
is to come with the ideal timetable that satisfies several objectives. The objectives
can be maximizing the number of passengers, minimizing the number of conflicts,
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