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PTCP Aim and Scope

Progress in Theoretical Chemistry and Physics

A series reporting advances in theoretical molecular and material sciences, including
theoretical, mathematical and computational chemistry, physical chemistry and chemical
physics and biophysics.

Aim and Scope

Science progresses by a symbiotic interaction between theory and experiment:
theory is used to interpret experimental results and may suggest new experiments;
experiment helps to test theoretical predictions and may lead to improved theories.
Theoretical Chemistry (including Physical Chemistry and Chemical Physics) pro-
vides the conceptual and technical background and apparatus for the rationalisation
of phenomena in the chemical sciences. It is, therefore, a wide ranging subject,
reflecting the diversity of molecular and related species and processes arising in
chemical systems. The book series Progress in Theoretical Chemistry and Physics
aims to report advances in methods and applications in this extended domain. It will
comprise monographs as well as collections of papers on particular themes, which
may arise from proceedings of symposia or invited papers on specific topics as well
as from initiatives from authors or translations.

The basic theories of physics – classical mechanics and electromagnetism, rela-
tivity theory, quantum mechanics, statistical mechanics, quantum electrodynamics –
support the theoretical apparatus which is used in molecular sciences. Quantum
mechanics plays a particular role in theoretical chemistry, providing the basis for
the valence theories, which allow to interpret the structure of molecules, and for
the spectroscopic models, employed in the determination of structural information
from spectral patterns. Indeed, Quantum Chemistry often appears synonymous
with Theoretical Chemistry; it will, therefore, constitute a major part of this book
series. However, the scope of the series will also include other areas of theoretical
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vi PTCP Aim and Scope

chemistry, such as mathematical chemistry (which involves the use of algebra
and topology in the analysis of molecular structures and reactions); molecular
mechanics, molecular dynamics and chemical thermodynamics, which play an
important role in rationalizing the geometric and electronic structures of molecular
assemblies and polymers, clusters and crystals; surface, interface, solvent and solid
state effects; excited-state dynamics, reactive collisions, and chemical reactions.

Recent decades have seen the emergence of a novel approach to scientific
research, based on the exploitation of fast electronic digital computers. Computation
provides a method of investigation which transcends the traditional division between
theory and experiment. Computer-assisted simulation and design may afford a
solution to complex problems which would otherwise be intractable to theoretical
analysis, and may also provide a viable alternative to difficult or costly laboratory
experiments. Though stemming from Theoretical Chemistry, Computational Chem-
istry is a field of research in its own right, which can help to test theoretical
predictions and may also suggest improved theories.

The field of theoretical molecular sciences ranges from fundamental physical
questions relevant to the molecular concept, through the statics and dynamics of
isolated molecules, aggregates and materials, molecular properties and interactions,
to the role of molecules in the biological sciences. Therefore, it involves the
physical basis for geometric and electronic structure, states of aggregation, physical
and chemical transformations, thermodynamic and kinetic properties, as well as
unusual properties such as extreme flexibility or strong relativistic or quantum-field
effects, extreme conditions such as intense radiation fields or interaction with the
continuum, and the specificity of biochemical reactions.

Theoretical Chemistry has an applied branch (a part of molecular engineering),
which involves the investigation of structure-property relationships aiming at the
design, synthesis and application of molecules and materials endowed with specific
functions, now in demand in such areas as molecular electronics, drug design or
genetic engineering. Relevant properties include conductivity (normal, semi- and
super-), magnetism (ferro- and ferri-), optoelectronic effects (involving nonlinear
response), photochromism and photoreactivity, radiation and thermal resistance,
molecular recognition and information processing, biological and pharmaceutical
activities, as well as properties favouring self-assembling mechanisms and combi-
nation properties needed in multifunctional systems.

Progress in Theoretical Chemistry and Physics is made at different rates in these
various research fields. The aim of this book series is to provide timely and in-depth
coverage of selected topics and broad-ranging yet detailed analysis of contemporary
theories and their applications. The series will be of primary interest to those whose
research is directly concerned with the development and application of theoretical
approaches in the chemical sciences. It will provide up-to-date reports on theoretical
methods for the chemist, thermodynamician or spectroscopist, the atomic, molecular
or cluster physicist, and the biochemist or molecular biologist who wish to employ
techniques developed in theoretical, mathematical and computational chemistry in
their research programs. It is also intended to provide the graduate student with
a readily accessible documentation on various branches of theoretical chemistry,
physical chemistry and chemical physics.



Preface

This volume collects 33 selected papers from the scientific contributions presented
at the Sixteenth International Workshop on Quantum Systems in Chemistry and
Physics (QSCP-XVI), which was organized by Pr. Kiyoshi Nishikawa at the
Ishikawa Prefecture Museum of Art in Kanazawa, Ishikawa, Japan, from September
11 to 17, 2011. Close to 150 scientists from 30 countries attended the meeting.
Participants of QSCP-XVI discussed the state of the art, new trends, and future
evolution of methods in molecular quantum mechanics, as well as their applications
to a wide range of problems in chemistry, physics, and biology.

The particularly large attendance to QSCP-XVI was partly due to its coordination
with the VIIth Congress of the International Society for Theoretical Chemical
Physics (ISTCP-VII), which was organized by Pr. Hiromi Nakai at Waseda Univer-
sity in Tokyo, Japan, just a week earlier, and which gathered over 400 participants.
These two reputed meetings were therefore exceptionally successful, especially
considering that they took place barely five months after the Fukushima disaster.
As a matter of fact, they would have both been cancelled if it wasn’t for the courage
and resilience of our Japanese colleagues and friends as well as for the wave of
solidarity of both QSCP-XVI and ISTCP-VII faithful attendees.

Kanazawa is situated in the western central part of the Honshu island in Japan,
and the Ishikawa Prefecture Museum of Art (IPMA) sits in the heart of the city
centre – which offers a variety of museums including the 21st Century Museum
of Contemporary Art – and next to the Kenrokuen Garden, one of most beautiful
gardens in Japan. IPMA is the main art gallery of Ishikawa Prefecture and its
collection includes a National Treasure and various important cultural properties
in its permanent exhibition halls.

Details of the Kanazawa meeting including the scientific program can be found
on the website: http://qscp16.s.kanazawa-u.ac.jp.Altogether, there were 24 morning
and afternoon sessions, where 12 key lectures, 50 plenary talks and 28 parallel
talks were given, and 2 evening poster sessions, each with 25 flash presentations
of posters which were displayed in the close Shiinoki Cultural Complex. We
are grateful to all the participants for making the QSCP-XVI workshop such a
stimulating experience and great success.

vii



viii Preface

The QSCP-XVI workshop followed traditions established at previous meetings:

QSCP-I, organized by Roy McWeeny in 1996 at San Miniato (Pisa, Italy)
QSCP-II, by Stephen Wilson in 1997 at Oxford (England)
QSCP-III, by Alfonso Hernandez-Laguna in 1998 at Granada (Spain)
QSCP-IV, by Jean Maruani in 1999 at Marly le Roi (Paris, France)
QSCP-V, by Erkki Brändas in 2000 at Uppsala (Sweden)
QSCP-VI, by Alia Tadjer in 2001 at Sofia (Bulgaria)
QSCP-VII, by Ivan Hubac in 2002 at Bratislava (Slovakia)
QSCP-VIII, by Aristides Mavridis in 2003 at Spetses (Athens, Greece)
QSCP-IX, by Jean-Pierre Julien in 2004 at Les Houches (Grenoble, France)
QSCP-X, by Souad Lahmar in 2005 at Carthage (Tunisia)
QSCP-XI, by Oleg Vasyutinskii in 2006 at Pushkin (St Petersburg, Russia)
QSCP-XII, by Stephen Wilson in 2007 near Windsor (London, England)
QSCP-XIII, by Piotr Piecuch in 2008 at East Lansing (Michigan, USA)
QSCP-XIV, by Gerardo Delgado-Barrio in 2009 at El Escorial (Spain)
QSCP-XV, by Philip Hoggan in 2010 at Cambridge (England)

The lectures presented at QSCP-XVI were grouped into seven areas in the field
of Quantum Systems in Chemistry and Physics:

1. Concepts and Methods in Quantum Chemistry and Physics
2. Molecular Structure, Dynamics, and Spectroscopy
3. Atoms and Molecules in Strong Electric and Magnetic Fields
4. Condensed Matter; Complexes and Clusters; Surfaces and Interfaces
5. Molecular and Nano Materials, Electronics, and Biology
6. Reactive Collisions and Chemical Reactions
7. Computational Chemistry, Physics, and Biology

The breadth and depth of the scientific topics discussed during QSCP-XVI are
reflected in the contents of this volume of proceedings of Progress in Theoretical
Chemistry and Physics, which includes six parts:

I. Fundamental Theory (three chapters)
II. Molecular Processes (nine chapters)

III. Molecular Structure (six chapters)
IV. Molecular Properties (three chapters)
V. Condensed Matter (six chapters)

VI. Biosystems (six chapters)

In addition to the scientific program, the workshop had its share of cultural
activities. There was an impressive traditional drum show on the spot. One afternoon
was devoted to a visit in a gold craft workshop, where participants had a chance to
test gold plating. There was also a visit to a zen temple, where they could discuss
with zen monks and practice meditation for a few hours. The award ceremony of
the CMOA Prize and Medal took place in the banquet room of the Kanazawa Excel
Hotel Tokyu.



Preface ix

The Prize was shared between three of the selected nominees: Shuhua Li
(Nanjing, China); Oleg Prezhdo (Rochester, USA); and Jun-ya Hasegawa (Kyoto,
Japan). The CMOA Medal was awarded to Pr Hiroshi Nakatsuji (Kyoto, Japan).
Following an established tradition at QSCP meetings, the venue of the following
(XVIIth) workshop was disclosed at the end of the banquet: Turku, Finland.

We are pleased to acknowledge the support given to QSCP-XVI by the Ishikawa
Prefecture, Kanazawa City, Kanazawa University, the Society DV-X’, Quantum
Chemistry Research Institute, Inoue Foundation of Science, Concurrent Systems,
HPC SYSTEMS, FUJITSU Ltd, HITACHI Ltd, Real Computing Inc., Sumisho
Computer System Corporation, and CMOA. We are most grateful to all members of
the Local Organizing Committee (LOC) for their work and dedication, which made
the stay and work of the participants both pleasant and fruitful. Finally, we would
like to thank the Honorary Committee (HC) and International Scientific Committee
(ISC) members for their invaluable expertise and advice.

We hope the readers will find as much interest in consulting these proceedings as
the participants had in attending the meeting.

The Editors
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Chapter 1
The Relativistic Kepler Problem and Gödel’s
Paradox

Erkki J. Brändas

Abstract Employing a characteristic functional model that conscripts arrays of
operators in terms of energy and momentum adjoined with their conjugate operators
of time and position, we have recently derived an extended superposition principle
compatible both with quantum mechanics and Einstein’s laws of relativity. We have
likewise derived a global, universal superposition principle with the autonomous
choice to implement, when required, classical or quantum representations. The
present viewpoint amalgamates the microscopic and the macroscopic domains
via abstract complex symmetric forms through suitable operator classifications
including appropriate boundary conditions. An important case in point comes from
the theory of general relativity, i.e. the demand for the proper limiting order at the
Schwarzschild radius. In this example, one obtains a surprising relation between
Gödel’s incompleteness theorem and the proper limiting behaviour of the present
theory at the Schwarzschild singularity. In the present study, we will apply our
theoretical formulation to the relativistic Kepler problem, recovering the celebrated
result from the theory of general relativity in the calculation of the perihelion
movement of Mercury.

1.1 Introduction

In this chapter, we will focus on some irreconcilable viewpoints in physical and
mathematical sciences. In particular, we will concentrate on the problem to unify
quantum mechanics with classical theories like special and general relativity as
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4 E.J. Brändas

well as the assertion of the inherent limitations of nontrivial axiomatic systems,
the latter known as Gödel’s inconsistency theorem(s) [1]. A surprising result
is the interconnection between the two problems above, which also leads to
reverberating consequences for the biological evolution [2, 3]. A crucial property
of the derivations is the extension of the dynamical equations to the evolution of
open (dissipative) systems, corresponding to specific biorthogonal formulations of
general complex symmetric forms [2] or alternatively operator equations including
non-positive metrics [3]. To display the generality of the formulation, we will
apply the functional model to recover the correct solution of the relativistic Kepler
problem. The conventional idea expresses the empirical Kepler laws as derivable
from classical Newton gravity. There is, however, a relativistic extension that
accounts for the famous rosette orbit, experimentally confirmed as the perihelion
motion of the planet Mercury, see e.g. Refs. [4–6]. The latter writes under the name
of the “relativistic Kepler problem”, see e.g. Ref. [4] for an approximate derivation
within the theory of special relativity. Along these lines, we will portray the explicit
connection between Gödel’s paradox and the imperative limiting condition at the
Schwarzschild boundary intrinsic to the present operator derivation of the theory of
general relativity.

Since we will especially focus on the relativistic problem, we will not say
anything more on the actual connections to condensed matter or rather to complex
enough systems like biological order and microscopic self-organisation [2, 3].
In doing so, we have already referred to Löwdin’s pedagogical and very intriguing
analysis of the Kepler problem demonstrating some rather surprising properties of
special relativity. The difficulties to analyse experimental conditions and predictions
in comparing Newton’s and Einstein’s theories [5] have been excellently described
already in the mid-1980s [6]. For a modern appraisal of Einstein’s legacy, where
the evolution of science, as unavoidably intertwined by the master’s illustrious
mistakes, is magnificently portrayed, see e.g. Ref. [7]. The consensus so far is that
Einstein is essentially right.

In Sects. 1.2 and 1.3, we will give the background facts for the mathematical
procedures used for (i) merging classical and quantum approaches, including
relativity with quantum theory, (ii) including a global superposition principle
combining abstract operations with materialistic notions and (iii) (see also the
conclusion) the interrelation between the Schwarzschild peripheral boundary limit
and Gödel’s (in)famous incompleteness theorem.

In Sect. 1.4, we will demonstrate the validity of the method by analysing
the relativistic Kepler problem by computing the perihelion motion of the planet
Mercury, followed by Sect. 1.5, displaying the explicit connection between the
Schwarzschild singularity and Gödel’s theorem. The final conclusion summarises
the modus operandi and its subsequent consequences.
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1.2 Extended Operator Equations and Global
Superposition Principles

In order to consider the positions mentioned above, we will revisit our general
theoretical development founded on complex symmetric forms [2]. Our operator
formulation is very general, yet comparatively simple, simultaneously regulating
straightforwardly space-time degrees of freedom with the corresponding conjugate
energy-momentum four-vector. For example, we will consider abstract kets in terms
of the coordinate Ex and linear momentum Ep

ˇ
ˇEx; ict ˛ ;

ˇ
ˇ
ˇ
ˇ
Ep; iE
c

�

(1.1)

cf. the general scalar product for a free particle

�

Ex;�ict j Ep; iE
c

�

D .2�„/�2e i
„
. Ep�Ex�Et/ (1.2)

In Eq. (1.2), we refer to a more general scalar product including all four
dimensions. In view of the fact that the construction should be complex symmetric,
see e.g. Refs. [2, 3], we have appended a minus sign before ict in the bra-position.
In general our biorthogonal construction should read

�

.Ex; ict/�j Ep; iE
c

�

(1.3)

which will be particularly important in connection with the so-called complex
scaling method [8, 9] and more generally when analytic continuation is achieved
via one or several parameters being made complex. The scalar product Eq. (1.3)
contains operators and their conjugate partners (in terms of time and coordinate
derivatives and Planck’s constant divided by 2�) related as usual, e.g.

Eop D i„ @
@t

I Ep D �i„ Er (1.4)

and

� D Top D �i„ @

@E
I Ex D i„ Erp (1.5)

Our objective is to find a complex symmetric formulation that contains the seed
of the relativistic frame invariants. The trick is to entrench an apposite matrix of
operators whose characteristic equation mimics the Klein–Gordon equation (or in
general the Dirac equation). Intuitively, one might infer that we have realised the
feat of obtaining the negative square root of the aforementioned operator matrix.
Thus, the entities of the formulation are operators and furthermore since they permit
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more general characterisations, compared to standard self-adjoint ones, they must
be properly extended. We will not at present devote more time on the mathematical
background except referring to relevant work in the past [2, 3, 10]. Making use of
the operator construction allocated above, the formulation becomes (E D mc2)

OH D jm; Nmi

0

B
B
@

m
�i Ep
c

�i Ep
c

�m

1

C
C
A

�
m�
Nm�

ˇ
ˇ
ˇ
ˇ

(1.6)

with jmi D ˇ
ˇ Ep; iE=c˛ and j Nmi D ˇ

ˇ Ep;�iE=c˛ (note the complex conjugation in
the bra-position, required to characterise a complex symmetric form, see e.g. [2])
and references therein, and

OT D j�; N�i
�
c� �i Ex

�i Ex �c�
� �

��
N��

ˇ
ˇ
ˇ
ˇ

(1.7)

with j�i D ˇ
ˇEx; ict ˛ and j N�i D ˇ

ˇEx;�ict ˛. Note that the entities presented in Eqs.
(1.6) and (1.7) are general (vector) operators in both the matrix and in the bra-
ket. Furthermore, we have separated the formulation of the energy-momentum and
the space-time; notwithstanding they are coupled via Eqs. (1.4) and (1.5). This
relationship compels that space-time develops concurrently with energy-momentum
dynamics and vice versa.

It is quite simple, see Refs. [2, 3, 10], to solve the biorthogonal characteristic
equation corresponding to OH; OT , defining the eigenvalues �˙ D ˙m0 and �˙ D
˙�0 from

�2 D m2
0 D m2 � p2c�2

�2 D �20 D �2 � x2c�2
(1.8)

with Ep � Ep D p2I Ex � Ex D x2. The problems engendered by the vectorial components
in the operator matrices in Eqs. (1.6, 1.7) are easily solved as follows: the secular
determinant gives way to expressions in terms of p2 and x2; decomposing the kinetic
energy operator for instance into one of the eleven sets of orthogonal coordinate
systems in which the Helmholtz equation separates, one may hence substitute
the “vector entity” with the appropriate degrees of freedom being in accordance
with the conditions under study. When applied to gravitational interactions, to be
detailed below, polar coordinates will be preferable. To develop the formulation in
correspondence with (classical) special relativity, we must distinguish the proper
operator that in classical terminology goes with the velocity � , cf. the customary
parameter ˇ D p=mc D (“classical particles”) D �=c, � D jE�j being the group
velocity of the particle/wave. Via the plane wave, see Eq. (1.2), we obtain basically
for the latter

E� D dEx
dt

D dE

d Ep (1.9)
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Even though Eq. (1.9) obtains from classical (Newton) dynamics, it is not hard
to prove that the relation dE D d.mc2/ D E� d Ep is valid also in the theory of special
relativity as well, see e.g. Löwdin [4]. From Eqs. (1.6–1.8), we obtain the general
result (using Ex D E��)

m D m0
p

1 � ˇ2 I � D �0
p

1 � ˇ2
I x D x0

p

1 � ˇ2
(1.10)

The solutions, Eq. (1.10), correspond each to a root of the characteristic
equation Eqs. (1.6–1.8). Although the general setting of the complex symmetric
forms ensures biorthogonality, the eigenvectors for OH (and similarly for OT ) obtain
simply as

jm0i Dc1 jmi C c2 j Nmi I �C D m0

j Nm0i D � c2 jmi C c1 j Nmi I �� D �m0

jmi Dc1 jm0i � c2 j Nm0i
j Nmi Dc2 jm0i C c1 j Nm0i

(1.11)

c1 D
r

1CX

2X
I c2 D �i

r

1 �X
2X

I X D
p

1 � ˇ2I c21 C c22 D 1:

Note that the formal superposition, Eq. (1.11), reproduces a physical attribute,
yielding the present derivation of special relativity a tangible conception outside
a purely abstract understanding. Another important observation, associated with
the biorthogonal setting of the system, entails that the analysis shows that the
formulation turns out to be nonstatistical. We notice moreover that the description
for a zero rest mass particle (photon) corresponds to a degenerate singularity of the
equations since

OHu D jm; Nmi

0

B
@

p

c

�ip
c

�ip
c

�p
c

1

C
A

�
m

Nm
ˇ
ˇ
ˇ
ˇ

D ˇ
ˇ0; N0˛

0

@
0
2p

c
0 0

1

A

�
0
N0
ˇ
ˇ
ˇ
ˇ

jm0i ! j0i D 1p
2

jmi � i 1p
2

j Nmi I
j Nm0i ! ˇ

ˇN0˛ D 1p
2

jmi C i 1p
2

j Nmi : (1.12)

In Eq. (1.12), we have chosen a momentum p in an arbitrary direction with the
mass consistently given by p/c. We also note another detail. The operator matrix and
its representation must, as we have demonstrated above, have a complex conjugate
in the bra-position. However, since we here encounter a degeneracy with the Segrè
characteristic equal to two, we have attained a so-called Jordan block “in disguise”.
To display the more familiar canonical (triangular) form of the description, we
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must find the proper similitude by turning to the conventional description in terms
of unitary transformation in the standard Hilbert space. Hence, we signify the
operator with the subscript “u”. There is in fact an entrenched point here, viz. that
the unitary formalism of standard quantum mechanics via analytic continuation –
to account e.g. for so-called unstable states [2, 9] – by necessity presupposes a
biorthogonal picture, which then permits the mapping of the co- and contravariant
formulation of the global superposition principle of classical legitimacy. It is within
this epitomised picture that we have made the statement that we advocate non-
probabilistic formulations of our universe including biological organisation and
immaterial evolution [2, 3, 10].

It is thus not surprising that the transformation which brings the matrix to the
Jordan canonical form is unitary for the degenerate situation corresponding to a
Jordan block, a degenerate eigenvalue (m0 D 0) with Segrè characteristic equal to
two (the dimension of the block). The unitarity of the transformation implies that the
canonical representation contains an equal amount of particle-antiparticle character
(charge neutral) and that orthonormality between the base vectors is conserved.
This behaviour, Eq. (1.12), signifies that zero rest mass particles here cannot be
separated into particle-antiparticle pairs, yet the dimensionality of the singularity
is two corresponding to the (linearly independent) base vectors j0i I ˇˇN0˛, cf. the
two linearly independent solutions of Maxwell’s equation. Although one would
sometimes say that the photon is its own antiparticle, this is consequently not
correct. As can be seen from Eq. (1.12), the corresponding expansion coefficients
of the orthogonal vectors are simply related by complex conjugation. A further
difference, comparing particles with and without rest mass, comes from the limiting
procedure in the case of the former, i.e. of letting � ! c, for more details see e.g.
[2, 3] and references therein. In the next section, we will give the crucial extension
to incorporate gravitational interactions in order to demonstrate its efficacy and
accuracy by determining the perihelion motion of Mercury.

1.3 Operator Algebra and the Theory of General Relativity

In analogy with the aforementioned formulation, the general structure sets up a char-
acteristic operator equation in terms of energy and momenta, see e.g. Refs. [2, 3],
and their conjugate operators, i.e. the time and the position. The interrelated forms
of the operators and the associated conjugates include in principle the specific tensor
properties of gravitational interactions. As displayed before [2, 3], we will not only
re-establish Einstein’s laws of relativity but we will also benefit from the option of
selecting separate classical and/or a quantum representations. Thus, with the proper
choice of appropriate operator realisations, e.g. the present perspective of uniting
the microscopic and the macroscopic views, various representations of reality maps
out. In this connection, one may mention related issues [2, 3], e.g. the idea of
decoherence, or protection thereof, referring to classical reality, or the law of light
deflection, the gravitational redshift and the time delay in Einstein general relativity.
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With this proviso, incorporating gravity is quite easy. The main problem will be
to augment the conjugate pair formulation with the dynamics by appending, to our
previous model in the generalised basis jm; Nmi, the interaction

m�.r/ D m	

r
I 	 D G �M

c2
(1.13)

thereby supporting a modified Hamiltonian (operator) matrix initially for the case
m0 ¤ 0

OH D jm; Nmi

0

B
B
@

m.1� �.r//
�i Ep
c

�i Ep
c

�m.1 � �.r//

1

C
C
A

�

m�
Nm�

ˇ
ˇ
ˇ
ˇ

(1.14)

where 	 is the gravitational radius, G the gravitational constant and M a spherically
symmetric nonrotating mass distribution (which does not change sign when m !
�m). The fundamental nature of M and the materialisation of black hole-like objects
are discussed in some detail in Ref. [10].

To sum up, we find that the operator �.r/ > 0 depends formally on the operator r
of the particle m, which represents the distance to the mass object M. The conjugate
operators Ex and � , corresponding to the energy and the momentum, will, all things
considered, restore the curved space-time scales indicative of classical theories.
Continuing further, one might in principle use the formulas obtained above by
incorporating the p0 D p.1 � �.r//�1 instead of p, or alternatively solving for the
proper values of Eq. (1.14) in analogy with Eq. (1.11), one obtaining

�2 D m2.1 � �.r//2 � p2

c2

�˙ D ˙m0.1 � �.r//
(1.15)

It is important to emphasise that the relations obtained from Eq. (1.15) do not
lead to a unique relation between the mass and the rest mass. The reason is quite
deep since it involves two principal problems. First, one needs to account for the
commensuration between the conjugate operators and second to unite the formula-
tion with respect to particles with rest mass m0 ¤ 0 and m0 D 0. The latter is a
blessing in disguise since, as we know, Einstein’s law of general relativity predicts
that a photon deviates twice as much as estimated by Newton’s classical theory.

In order to make a slight detour suitable for our final goal, i.e. the determination
of the perihelion motion of Mercury, we will consider the following model; see be-
low and also Refs. [2, 10]. First, we will portray Mercury as a particle, with nonzero
rest mass m, orbiting a gravitational source, the Sun being represented as a spherical
black hole-like object with mass M, M � m. Second, assuming a nonrotating
object M, one derives, since the angular momentum is a constant of motion, the
relationm�r D m	c, by postulating a limit velocity c at the limiting distance at the
gravitational radius 	. Actually, we are measuring the distance between the particle
(Mercury) m from M (the Sun), in units of 	, i.e. N	, where N is a large number,
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interpreting the condition as m�r D mN	c=N . In the last relation, m is the mass
operator (nonzero eigenvalue!), r the radial distance in “gravitational units”, while
the velocity is given in fractions of c. Consequently, the constant angular momentum
in, e.g. the z-direction prompted by the velocity ¤ in the x-y plane, with unit vector
En, acquiesces the given condition specified as Eq. (1.17) below.

It is interesting to note the boundary condition derived above, depending on the
large difference in the masses between m and M and subject to distances down to
microscopic dimensions, makes for a circular trajectory in a plane perpendicular to
the direction of the angular momentum. Nevertheless, as we will see, the boundary
condition to be obtained below will be commensurate with the perihelion shift of
Mercury, see also Ref. [10]. In general, one obtains in the macroscopic domain

E� D dEx
dt

D dEx
d'

D

r2
I d

dt
D D

r2
d

d'
(1.16)

where the area velocity D is a constant of motion in classical dynamics and D
multiplied by m is a constant of motion in the case of special relativity [4]. Here, we
will also derive an analogous condition for the general case, see more below.

To sum up, we have derived a boundary condition for a bound (quasi-) stationary
trajectory using the proper polar representation jr; icti I jpr ; iE=ci

� D �.r/c D 	c

r
(1.17)

Accordingly the complex symmetric representation, with �=c D �.r/, becomes

OH D jm; Nmi
�
m.1� �.r// �im�.r/En
�im�.r/En �m.1 � �.r//

� �
m�
Nm�

ˇ
ˇ
ˇ
ˇ

(1.18)

leading to the formal scaling relation, where we have removing the vector En in the
matrix for simplicity (in the actual calculation in the next section, it will of course
be preserved!)

m

�
.1 � �.r// �i�.r/

�i�.r/ �.1 � �.r//
�

! m

�p

.1 � 2�.r// 0

0 �p.1 � 2�.r//
�

(1.19)

The diagonal part in Eq. (1.19) reveals the scaling property of the mass (m0 ¤ 0).
However, the most interesting point is the divulgence of a Jordan block singularity
at r D 2	 at the celebrated Schwarzschild radius representing the canonical form
at the degenerate point �.r/ D 1

2

m

0

B
B
@

1

2
�i 1
2

�i 1
2

�1
2

1

C
C
A

!
�
0 m

0 0

�

(1.20)
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under the unitary transformation, see the analogy with the previous section,

jm0i ! j0i D 1p
2

jmi � i
1p
2

j Nmi I

j Nm0i ! ˇ
ˇN0˛ D 1p

2
jmi C i

1p
2

j Nmi :
(1.21)

Returning to the conjugate problem, we see a more complex situation compared
to the case of special relativity. As already pointed out, photons or particles of zero
rest mass (m0 D 0), exhibit a different gravitational law compared to particles
with m0 ¤ 0. The latter, i.e. the well-known prediction and the experimentally
confirmed fact of the light deviation in the Sun’s gravitational field, measured during
a solar eclipse, instantly boosted Einstein to international fame. Therefore, we need
to account for this “inconsistency” for zero rest mass particles, by introducing the
notation �0.r/ D G0 �M=.c2r/. Hence, one obtains (m0 D 0) that

m.1 � �0.r// D p

c
(1.22)

where �0.r/ is to be uniquely determined below. From the fact that OH is singular,
cf. Eq. (1.12), and one obtains

0

B
B
@

p

c

�ip
c

�ip
c

�p
c

1

C
C
A

!
0

@
0
2p

c

0 0

1

A (1.23)

cf. the analogous unitary transformation in the previous section. As expected from
the special theory, light particles in the complex symmetric formulation correspond
to Jordan blocks for all values of r. To be consistent, we require Eq. (1.22) to be
compatible with the boundary condition Eq. (1.17) and the relations, Eqs. (1.19,
1.20). Hence, in order to be commensurate with the case m0 ¤ 0, we impose zero
average momentum, Eq. (1.22), at the Schwarzschild radius r D 2	 D RLS , i.e.
that Np D 0 at �.r/ D 1=2 and hence that G0 D 2G or

�0.r/ D 2�.r/ (1.24)

Equation (1.24) is nothing but Einstein’s famous law of light deflection, i.e. that
photons deflect twice the amount predicted by Newton’s gravity law for nonzero
rest mass particles.

Returning to the conjugate problem, we have previously, see Refs. [2, 3, 10],
proved that the renowned Schwarzschild gauge obtains from the similarity

�
cds 0

0 �cds
�

/
�
cAd� �iBd Ex

�iBd Ex �cAd�

�

(1.25)



12 E.J. Brändas

where the conjugate operator, defined by Eqs. (1.4, 1.5), now becomes

i„ @
@t

D Eop.t/ D i„ @
@s

@s

@t
D Eop.s/

p

1 � 2�.r/

Es
p

1 � 2�.r/ D Et I @s
@t

D p

1 � 2�.r/I s D �i„ @

@Es
(1.26)

From Eq. (1.26), we conclude that Es and Et represent the energy of the system
at the space-time “point” s and (t,r) respectively, where the system consists of a
“particle-antiparticle” configuration and the black hole system denoted by M. Note
that Es includes also the rest mass energy and appropriate kinetic energy (m0 ¤ 0).
As mentioned, the result is compatible with the Schwarzschild metric, see [2, 3, 10]
and further below.

Deriving the apposite gauge, one finds that

A D B�1 D .1 � 2�.r//
1
2 (1.27)

and, thus, the celebrated line element expression (in the spherical case) becomes

�c2ds2 D �c2dt2.1 � 2�.r//C dr2.1 � 2�.r//�1 (1.28)

First, we notice that the relations between the quantities dependent on s and t, as
given in Eq. (1.26), are compatible with Eq. (1.25). This leads, see e.g. [3], directly
to the renowned Einstein laws, the gravitational redshift and the gravitational time
delay. Second, we observe that the area velocity multiplied by the mass is a constant
of motion. In analogy with the special case [4], where

mD D m0A0I m D m0
p

1 � ˇ2 I D D A0
p

1 � ˇ2 (1.29)

one obtains

mD D msAsIm D ms

p

1 � 2�.r/IAs D D
p

1 � 2�.r/ (1.30)

where depending on the actual situation msAs can be further decomposed according
to Eq. (1.29).

In order to prepare for the computation of the perihelion movement of planet
Mercury, we need to discuss a final point. As is well-known, see standard physics
texts or [4], the force law, the momentum law and the energy law are not compatible
in the relativistic domain. For instance, from

E D mc2.1 � �.r//I dE D 0 (1.31)
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follows that

f D nG

�
mM

r2

�

.1 � �.r//�1I n D �r

r
(1.32)

i.e. that the force gets modified by the extra factor .1 � �.r//�1. The reason for this
discrepancy lies clearly in the inability of the Eqs. (1.31, 1.32) to account for the
conjugate problem as well as the boundary condition at the Schwarzschild radius.

To cope with this inconsistency, we introduce the modified Hamiltonian (opera-
tor) matrix for the case m0 ¤ 0, cf. Eq. (1.14),

bH mod D jm; Nmi
 

m
�i Np
c�i Np

c
�m

! �
m�
Nm�

ˇ
ˇ
ˇ
ˇ

(1.33)

where Np D p=.1 � �.r//obtaining

E D Es
p

1 � 2�.r/ D .1� �.r//E mod (1.34)

Note that E D mc2, Es D msc2 and Emod D mmodc2 appearing in Eq. (1.34) contain
appropriate rest mass and kinetic energies commensurate with our present relativity
theory. Alternatively, one might propose the classical ansatz

� 0 D �

.1 � 	=r/
I � D dr

dt
I � 0 D dQr

dt
D dr

dt

�
r

.r � 	/
�

Qr D h.r/ D
Z

h0.r/dr I h0.r/ D r

.r � 	/

Qr D
rZ

2	

u

.u � 	/du D r � 2	C 	 log

�
.r � 	/

	

�

(1.35)

which yields the converse connection

r

	 � 1
D f

� Qr
	C 1

�

I f .x/ Dx � log ff .x/g

f 0.x/ D f .x/

1C f .x/
I (1.36)

and the corresponding links Qr D 0 $ r D 2	 and r � Qr for r >> 	. We observe
that these natural (classical) gravitational coordinates impart an apt spectral range
for the operator r since Qr is zero inside the Schwarzschild radius. Furthermore, the
consistency relations Eqs. (1.31, 1.32), albeit not exact in the general case, agrees
to first order of �.r/. (In fact, an exact relationship for the force can be found if
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the variations above are carried out in the coordinates r I dr D dr .1 � �.r//) In
analogy, one obtains for

E D mc2
p

1 � 2�.r/I dE D 0 (1.37)

and getting similarly

f D nG

�
mM

r2

�

.1 � 2�.r//�1 D nG

�
msM

r2

��p

1 � 2�.r/
	�1

(1.38)

Consequently, since we will carry out the calculation in the next section in terms
of covariant energies and masses, we will use the following equations

E D mc2
p

1 � 2�.r/ D msc
2.1 � 2�.r//

f D nG

�
msM

r2

��p

1 � 2�.r/
	�1 D nmsc

2 �.r/

r
.1C �.r/C :::/ (1.39)

which together with Eqs. (1.29, 1.30) will serve as constants of motion in the
determination of the perihelion rosette orbit. In passing, we note that zero rest mass
particles, e.g. the photons, will follow the law

E D mc2.1 � 2�.r//

f D n2G

�
mM

r2

�

.1 � 2�.r//�1 D n2mc2
�.r/

r
.1C 2�.r/C :::/ (1.40)

in analogy with Eqs. (1.37, 1.38) and in accordance with Eqs. (1.22, 1.24).

1.4 The General Kepler Problem

Since this will primarily be a “classical” computation, it is important to realise
that our global formalism, combining the classical and the quantum interpretation,
incorporates boundary conditions as obtained from the present picture thrown as a
characteristic operator array formulation. Using simple generalisations of the so-
called Binet’s formulas in classical mechanics, we will consider the computation
in the following way, see e.g. any textbook on classical mechanics or Ref. [4] for
details. First, we give a summarising documentation of the essential steps of the
classical Kepler problem (m the mass of Mercury and M the mass of the Sun); then
we will proceed by the corresponding extension to the relativistic case in particular
pointing out the relevant alterations enforced by the boundary conditions derived
above, see particularly Eq. (1.39).
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Using the area velocity D, see Eq. (1.16), which is a constant of motion, D D A
in the classical case of the central force problem, one derives straightforwardly the
following relations in standard polar coordinates r; ' (here, the particle motion is in
a plane perpendicular to the angular momentum vector L)

�r D dr

dt
D �D du

d'
I�' D �Du

�2 D .�r /
2 C .�'/

2 D D2

(�
du

d'

�2

C u2
)

(1.41)

where for convenience the variable u D 1/r has been introduced. In addition to the
velocity formulas, one obtains for the acceleration

ar D �dD

dt

du

d'
�D2u2

(

d2u

d'2
C u

)

a' D �u
dD

dt
(1.42)

From Eqs. (1.41, 1.42) and a' D 0, one obtains straightforwardly (G being the
gravitational constant as before)

�
�
A2

r2

�(

d2u

d'2
C u

)

D �GM
r2

(1.43)

or simply

d2u

d'2
C u D ˛I ˛ D G

M

A2
(1.44)

Note that Eq. (1.44) has the standard solution u D ˛ C ˇ cos.' � '0/, which for
simplicity we can take '0 D 0. As is well-known, the conic intersections in polar
coordinates take the form

u D ˛ C ˇ cos' (1.45)

In the present context, we realise that ˛ > jˇj yields an elliptic orbit, where ˇ
can be expressed in terms of E and ˛ via

E D1

2
m�2 �GmM u D 1

2
mA2

(�
du

d'

�2

C u2
)

�GmM u

E D1

2
mA2.ˇ2 � ˛2/

(1.46)
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Incidentally, we note that the deviation of a particle with mass m passing a large
sphere with mass M gives a hyperbolic orbit (˛ < jˇj) yielding the exact formula
(considering the point u D 0)

2
 D 2arcsin

�
˛

ˇ

�

I 
 D ' � �

2
(1.47)

and finally, to complete the picture, a parabolic orbit obtains for ˛ D jˇj.
In order to generalise this description to the relativistic domain, we will, see

also previous section, represent Mercury as a particle, with a nonzero rest mass
m, orbiting the gravitational source, the Sun, the latter being characterised as a
nonrotating spherical black hole-like object with mass M. Furthermore, we assume
M � m, so that the Schwarzschild radius of Mercury is negligible compared to
that of the Sun. Noting that we have a central force, one gets

�
dm

dt

�

�' Cma' D 0 (1.48)

from which, using Eqs. (1.41, 1.42), it follows that mD D msAs is a constant of
motion, cf. Eqs. (1.16, 1.29, 1.30) above. Employing further the energy law and the
force law, where the total energy also is a constant of motion, Eq. (1.39) yields,
introducing the parameters q D ms=m0 and the energy quotient � D Es=E0 (note
that we are expressing the mass and the area velocity with the subindex “s”)

q D ms

m0

D 1
p

1 � ˇ2 I˛ D G
M

A2s

� D Es

m0c2
D q .1 � 2	u// I 	 D G

M

c2
(1.49)

It is important to note that Eq. (1.49) contains a factor 2	 in the expression for
� above while the force still is given by Eq. (1.39). In analogy with Eq. (1.41), we
find that

�2 D D2

(�
du

d'

�2

C u2
)

D
�
A2s
q2

�(�
du

d'

�2

C u2
)

(1.50)

which with the definitions given in Eq. (1.49)

q D �

.1 � 2	u/
I �2 D c2

�

1 � 1

q2

�

(1.51)

yields

�
du

d'

�2

C u2 D
�
c2

A2s

�



q2 � 1
�

(1.52)
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Expressing the differential equation in terms of the parameters ˛ and � in
Eq. (1.49), one obtains after taking the derivative with respect to ® and dividing
by 2 .du=d'/

d2u

d'2
C u D ˛�2

.1 � 2	u/3
(1.53)

This is a differential equation separable in the classical variables u and ®. Note
also the difference between this study and the one using the theory of special
relativity, where the factor 2 in front of 	 is missing in Eq. (1.53), see Ref. [4]
for more details.

An approximate solution to Eq. (1.53) can be derived by expanding the right-
hand side in a power series in �(u) D	u which gives

d2u

d'2
C u




1 � 6˛	�2
� D ˛�2 C 24	2u2�2C::: (1.54)

To first order in 	u, Eq. (1.53) generates the formula, cf. the classical case

u D ˛1 C ˇ cos'1

'1 D '



1 � 6˛	�2� 12

˛1 D ˛�2



1 � 6˛	�2��1 (1.55)

where ˇ can be obtained in analogy with the classical case above, i.e. from the
quotient � in Eq. (1.49), Eq. (1.52) gives

�	

˛

	
(�

du

d'

�2

C u2
)

D �2

.1 � 	u/2
� 1 (1.56)

Finding optimum values for u, i.e. for which du
d' D 0, yields

�2 D
�

1 � 	

R

	2
�

1C
�	

˛

	� 1

R2

��

I R D .˛1 C ˇ/�1 (1.57)

To first order of 	/R, neglecting higher orders, Eq. (1.57) yields the wanted result
for .ˇ2 � ˛21/, i.e.

�2 D 1C 	

˛1
.ˇ2 � ˛21/ (1.58)

Using the energy quotient � D Es=E0, it follows that for jˇj>’1 (�> 1), one
obtains a hyperbolic type orbit, for jˇj D’1 (�D1) a parabolic orbit and for jˇj<’1
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(� <1) an elliptic type orbit, cf. the classical case. The latter condition corresponds
to a rosette orbit comprising an ellipse with a perihelion motion matching maximum

values, for the angles '1 D 2�n or ' D 2�n



1 � 6˛	�2�� 1
2 D 2�n.1C 3˛	�2 C

� � � /, of u D 1=r , indicating that for each rotation the perihelion moves an angle

�' D 6�˛	�2 (1.59)

which on account of Eq. (1.58) or � � 1 writes �' D 6�˛	. In terms of the
eccentricity, e, of the ellipse, Eq. (1.59) can be written

�' D 6�	

a.1 � e2/
(1.60)

with e D d/a and the ellipse, Eq. (1.55), has been expressed in Cartesian coordinates

.x � d/2

a2
C y2

b2
D 1

We may also consider the deviation of a particle with nonzero rest mass passing a
large sphere with mass M. Approximately one obtains in analogy with the classical
case when r D 1 or u D 0 giving the condition cos'1 D �˛1=ˇ (real solution in
the hyperbolic case). Using Eqs. (1.50, 1.55, 1.57) one obtains for small values of
˛1=ˇ, cf. Eq. (1.47), introducing the angle 
 D ' � �=2

2
 � 2
˛1

ˇ
D 2

	

R

�
c

�0

�2

(1.61)

where �0 is the value of � at u D 0. Here, we observe that for photons using
Eq. (1.40) and �0 D c that

2
 � 4
˛1

ˇ
D 4

	

R
(1.62)

Equations (1.59, 1.60, 1.62) agree with the results of Einstein’s theory of general
relativity for the perihelion movement of Mercury and the law that a photon deviates
in a gravitational field twice the amount as predicted by Newton’s gravitational law.

1.5 Relation Between the Schwarzschild Singularity
and Gödel’s Theorem

In order to discuss the relation between the singularity (Jordan block) occurring at
r D 2	 D RLS , where RLS is the renowned Schwarzschild radius, and Gödel’s
paradox, we will return to the discussion in connection with Eq. (1.19), i.e.,
considering the matrix mG where



1 The Relativistic Kepler Problem and Gödel’s Paradox 19

G D
�
1 � �.r/ �i�.r/
�i�.r/ 1 � �.r/

�

(1.63)

obtained from the operator ansatz in terms of energy and momenta for the
gravitational problem. Before adjusting to the conjugate problem, we recapitulate
that the matrix G results from the requirement of the boundary condition given by
Eq. (1.17). In particular, we emphasise the occurrence of Jordan blocks (dimension
2) as being the consequence at the degenerate point at the Schwarzschild radius.

To convey the unexpected relation with the Gödelian theorem, we refer to our
procedure to convert the exegesis of a truth-functional proposition calculus to a
linear algebra terminology, see e.g. for details and further references [3, 11]. In
brief, we consider two propositions P and Q D :P as expressed in the following
table, where : is the operation of logical negation

true false

Truth Table D true
false

�
P.x/ Q.x/

:Q.x/ :P.x/
�

(1.64)

The table will be understood as follows: “the first row” is true when P is true
and Q is false, and the second row reads false if Q is true and P is false. The map
entails the translation of the truth table, Eq. (1.64), into a truth matrix P by means of
probability operators/functions p and q D (1�p) referring to a basis in Dirac notation
jtruei and jfalsei allocating a negative signature to the negation row:

jtruei jfalsei
P D jtruei

jfalsei
�

p .1 � p/

�.1 � p/ �p
�

(1.65)

Note that P by definition relates to the so-called bias operator since it conveys
classical probability information through the system operators �˙ D 1

2
.I ˙ P2/

through (I is the unit matrix)

1

2
.I C P2/ D pI I 1

2
.I � P2/ D .1� p/I

The matrix, Eq. (1.65), is easy to diagonalise (if p ¤ 1
2
), i.e.

P D
�

p .1 � p/

�.1 � p/ �p
�

!
�
�C 0

0 ��

�

�2 D p2 � .1 � p/2I �˙ D ˙p2p � 1 (1.66)

for more details, see e.g. Refs. [3, 11]. It easy to see what happens when p D 1
2
, i.e.

when the bias is zero and neither P nor Q D :P can be true (or false) since
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bP D .jtruei ; jfalsei/
�

1
2

1
2

� 1
2

� 1
2

� � htruej
hfalsej

�

D ˇ
ˇtrue

˛ ˝

false
ˇ
ˇ (1.67)

or

bP D 
ˇ
ˇtrue

˛

;
ˇ
ˇfalse

˛�
�
0 1

0 0

� � ˝

true
ˇ
ˇ

˝

false
ˇ
ˇ

�

ˇ
ˇtrue

˛ D 1p
2

fjtruei � jfalseig
ˇ
ˇfalse

˛ D 1p
2

fjtruei C jfalseig (1.68)

or in terms of the truth table, Eq. (1.64)

jtruei jfalsei ˇ
ˇtrue

˛ ˇ
ˇfalse

˛

P D jtruei
jfalsei

0

B
B
@

1

2

1

2

�1
2

�1
2

1

C
C
A

D
ˇ
ˇtrue

˛

ˇ
ˇfalse

˛

 
0 1

0 0

!

(1.69)

The result, Eqs. (1.68, 1.69), reveals an exceptional interpretation of the de-
generate situation, since it charts a self-referential statement, see more below, as
a Jordan block (Segrè characteristic equal to two) in the present general (quantum)
logical framework. Thus choosing P D G, where G is the famous Gödel arithmetical
proposition with neither G nor :G provable within the given set of axioms of
elementary arithmetic [1]. The paradox epitomises a singularity, since P is non-
diagonal, while simultaneously the truth table conveys that G is not true and :G
is not false or both G and :G are false. The fundamental conclusion is that
decoherence of classical truth values (cf. the wave-function collapse in quantum
mechanics) is forbidden at the degenerate point p D 1

2
. Nevertheless, we recover

the classical result since P2 D 0, i.e. without some bias at hand our information is
zero, i.e. p D .1 � p/ D 1

2
.

As discussed earlier, the present interpretation of the truth table can be obtained
from conventional representations with the use of a non-positive definite metric
�; �11 D ��22D1; �12D�12D0. In this picture, we can use conventional bra-
ket nomenclature, while for another selection of �, leading e.g. to a complex
symmetric choice, it would require complex symmetric realisations. In both cases,
the formulation is biorthogonal. With this realisation, we can make an identification
between Eqs. (1.63) and (1.66), making the replacement q D �.r/, where q is
related to the probability function/operator of the simple proposition Q D :P.
Hence, we realise a probabilistic origin combined with the nonclassical, self-
referential character of gravitational interactions. Note also the analogy between
the formulations, i.e. that the result of a classical measurement, i.e. the truth or
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falsity of the statement Q, entails that either q D 1 or that q D 0. The (in)famous
Gödel proposition (neither provable right nor wrong within the given axiomatic
system) is logically formulated here as a special point singularity, see Eqs. (1.67–
1.69). Similarly, decoherence to a particle or antiparticle is impossible at �.r/ D 1

2

attributing via the self-referentiability property of gravitation, an automatic code
protection principle at the Schwarzschild fringe. This relationship prompts the
label “Gödelian time arrow” as combining the cosmological expansion with the
gravitational collapse at the black hole boundary; see more in Ref. [11].

1.6 Conclusion

In conclusion, we emphasise the following points: (i) we have re-derived a
previously obtained operator array formulation, which in its complex symmetric
form permits a viable map of gravitational interactions within a combined quantum-
classical structure; (ii) the choice of representation allows the implementation of
a global superposition principle valid both in the classical as well as the quantum
domain; (iii) the scope of the presentation has focused on obtaining well-known
results of Einstein’s theory of general relativity particularly in connection with the
correct determination of the perihelion motion of the planet Mercury; (iv) finally, we
have obtained a surprising relation with Gödel’s celebrated incompleteness theorem.

In particular, we have considered the exacting determination of perihelion
motions as acquired commensurate with the theory of general relativity. We also
noted and explained that the theory of special relativity yields half the correct
perihelion shift since it does not take account of the proper background dependence.
In this chapter, we have emphasised that in order to recover the relativistic Kepler
problem correctly, one must set up and explicitly prepare the precise boundary
condition at the Schwarzschild boundary. The interconnection, alluded to in the
title, ensues from the simple fact that the condition, Eq. (1.17), together with Eqs.
(1.18–1.20), yields a singularity in Eq. (1.63). The latter is trivially formulated as an
analogue of Gödel’s incompleteness theorem via the translation of the conventional
truth-functional proposition calculus to regular linear algebra generalised to include
general non-positive definite metrics.

In a separate contribution [11], we have analysed within the present framework
an assessment of the various arrows of time and the possible symmetry violations
instigated by gravitation including the fundamental problem of molecular chirality
[12]. Other related developments involve Penrose’s concept of objective reduction
(OR), i.e. gravity’s role in quantum state reduction and decoherence as a fun-
damental concept that relates micro-macro domains including theories of human
consciousness [13], see also Ref. [3] for more details. Note also efforts to derive
quantum mechanics from general relativity [14].

There are finally many consequences that follow from the present formulation,
i.e. fundamental symmetry violations, scale invariance and the non-probabilistic
traits of evolution due to the regulation of self-reference [11]. In principle, the
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present analogy supports the derivation of the gravitational law from the viewpoint
of a general truth-functional proposition calculus. The functional behaviour for �(r)
then drives from a quotient between the 2D surface surrounding a 3D sphere at the
point “s” and the 3D surface surrounding a 4D volume, the latter by instigating an
extra dimension from cdt D dr.1 � 2�.r//�1.
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Chapter 2
The Dirac Electron: Spin, Zitterbewegung,
the Compton Wavelength, and the Kinetic
Foundation of Rest Mass

Jean Maruani

Abstract The Dirac equation, which was derived by combining, in a consistent
manner, the relativistic invariance condition with the quantum superposition princi-
ple, has shown its fecundity by explaining the electron spin, predicting antimatter,
and enabling Schrödinger’s trembling motion (Zitterbewegung). It has also yielded
as expectation value for the electron speed the velocity of light. But the question has
hardly been raised as to the effect of this intrinsic motion on the electron mass. In
this chapter, we conjecture that the internal structure of the electron should consist
of a massless charge describing, at light velocity, a vibrating motion in a domain
defined by the Compton wavelength, the measured rest mass being generated by
this very internal motion.

Around 1950, I had the rare opportunity of meeting Albert Einstein : : : . The professor
addressed my colleague: ‘Vot are you studying?’ ‘I’m doing a thesis on quantum theory’.
‘Ach!’ said Einstein, ‘a vaste of time!’

He turned to me: ‘And vot are you doing?’ I was more confident: ‘I’m studying
experimentally the properties of pions’. ‘Pions, pions! Ach, vee don’t understand de
electron! Vy bother mit pions?’ : : :
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2.1 Introduction

The atomic theory of matter, which was conjectured on qualitative empirical
grounds as early as the sixth century BC, was shown to be consistent with increasing
experimental and theoretical developments since the seventeenth century AD, and
definitely proven by the quantitative explanation of the Brownian motion by Einstein
and Perrin early in the twentieth century [1]. It then took no more than a century
between the first measurements of the electron properties in 1896 and of the
proton properties in 1919 and the explosion of the number of so-called elementary
particles – and their antiparticles – observed in modern accelerators to several
hundred (most of which are very short lived and some, not even isolated). Today,
the ‘standard model’ assumes all particles to be built from three groups of four
basic fermions – some endowed with exotic characteristics – interacting through
four basic forces mediated by bosons – usually with zero charge and mass and with
integer spin [2].

In this zoo of particles, only the electron, which was discovered even before the
atomic theory was proven and the atomic structure was known, is really unsecable,
stable, and isolatable. The proton also is stable and isolatable, but it is made up
of two quarks up (with charge C2/3) and one quark down (with charge �1/3). As
for the quarks, while expected to be stable, they have not been isolated. The other
particle constitutive of the atomic nucleus, the neutron, is also made up of three
quarks, one up and two down, but it is not stable when isolated, decaying into a
proton, an electron, and an antineutrino (with a 15-min lifetime). The fermions in
each of the higher two classes of the electron family (muon and tau) and of the two
quark families (strange/charmed and bottom/top) are unstable (and not isolatable for
the quarks). Only the elusive neutrinos in the three classes, which were postulated
to ensure conservation laws in weak interaction processes, are also considered as
being unsecable, stable, and isolatable.

Although quantum chromodynamics has endeavoured to rationalize the world
of quarks, gluons, the strong interaction, and composite particles [2], it is not as
in a developed stage as quantum electrodynamics, where electrons, photons, the
electromagnetic interaction, and the whole domain of chemical physics are unified
in a refined manner [3, 4]. This latter theory is but an extension of the Dirac theory
[5, 6], which treated the electron in a consistent quantum-relativistic manner while
its interaction with the electromagnetic field was considered semi-classically, to a
full quantum-relativistic treatment of charged particles interacting with each other
and with a quantized electromagnetic field by exchanging virtual photons.

Traditional attributes of matter are opacity (to light), resistance (to penetration),
inertia (to motion), and weight. A transparent glass has no opacity (to visible light),
but it requires a very hard material (a diamond cutter) to be penetrated. Pure air also
shows transparency, but it shows resistance to penetration only at very high speeds
(blasts, storms, planes, parachutes). These two attributes are well understood today
as quantum effects due to the interactions of molecules with electromagnetic fields
and with other molecules.
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The attribute of inertia was identified by Galileo as being a resistance to ac-
celeration/deceleration (rather than to uniform linear motion), while the attribute
of weight (also investigated by Galileo) was related by Newton to the attraction
by a massive body (as expressed in Kepler’s rules). These two attributes were
later correlated in general relativity theory by Einstein. But the quantum theory
has not been directly involved in either inertia or weight until Dirac’s attempt to
bring together quantum and relativistic conditions in a matrix linear equation for
the electron, using the total energy mc2 rather than the kinetic energy p2/2m0 in his
Hamiltonian operator.

In this chapter, we shall reassess some of the physical implications of the
Dirac equation [5, 6], which were somehow overlooked in the sophisticated formal
developments of quantum electrodynamics. We will conjecture that the internal
structure of the electron should consist of a massless charge describing at light
velocity an oscillatory motion (Zitterbewegung) in a small domain defined by the
Compton wavelength, the observed spin momentum and rest mass being jointly
generated by this very internal motion.

2.2 Compton Wavelength and de Broglie Wavelength

Although the corpuscular aspect of electromagnetic radiation, which was surmised
by Newton in the seventeenth century, was used by Planck in 1900 to explain Wien’s
black body radiation law and by Einstein in 1905 to explain Lenard’s photoelectric
effect, its most spectacular demonstration was Compton’s explanation in 1923 of
the anomalous scattering of X-rays by bound electrons.

If an incident photon (p1, E1 D p1c) hits an electron considered as nearly at rest
(0, m0c2), producing an electron recoil (p0, E0), the direction of the scattered photon
(p2, E2 D p2c) makes an angle 
 with that of the incident photon. Applying the laws
of conservation of energy and momentum to the scattering process:

p1 D p2 C p0; p1c Cm0c
2 D p2c C 


m2
0c
4 C p20c

2
� 1
2 ; (2.1)

one derives

m0c.p1 � p2/ D p1p2.1 � cos 
/: (2.2)

Using the incident and scattered photon wavelengths, �1 D h/p1, �2 D h/p2, and
introducing the electron Compton wavelength, �C D h/m0c, one obtains

�2 � �1 D �C .1 � cos 
/: (2.3)

This expression is rigorous with the relativistic treatment we have used. But the
occurrence of the Compton wavelength �C is not a relativistic effect since Eq. (2.2)
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also holds (to first order, except around 
 D 0ı) if one uses the classical formula,
E0 D p20=2m0, for the kinetic energy of the ejected electron. In fact, the occurrence
of this electron wavelength stems from the assumption that light is made of particles
endowed with kinetic momentum, p D h/�, as well as with energy, E D p c.

The question remains as to how the electron interacts, at the subquantum level,
to scatter the photon. One could speculate on the fact that for 
 D�/2 (orthogonal
scattering) the Compton wavelength adds to the photon wavelength while the
electron recoils along 
� ��/4 (as would a tiny mirror inclined at �/4), while for

 D 0 (no scattering) the photon wavelength remains unchanged and the electron
unmoved. Adding the electron Compton wavelength to the orthogonally scattered
photon wavelength reduces the photon energy by the amount used for the electron
ejection.

The Compton wavelength, �C D h/m0c, is different from the de Broglie wave-
length, �B D h/m0v, in that it is unrelated to the particle velocity but solely depends
on its rest mass (and light velocity). The larger the rest mass, the smaller the
wavelength or, one could say, the larger the Compton wavelength, the smaller the
particle rest mass.

2.3 The Dirac Equation

It will be useful to recall the Lorentz transformation equations of the space and time
coordinates of a free particle between two inertial frames S and S0:

x0 D �.x � ˇct/ (2.4a)

ct 0 D �.�ˇx C ct/ (2.4b)

where ˇD v/c and � D (1 �ˇ2)�1/2, v being the velocity of frame S0 relative to
frame S and c, the velocity of light. In similar transformation equations for the
electromagnetic field (ruled by Maxwell’s equations), the electric field components
play the role of space coordinates and the magnetic field’s that of a time coordinate.

It can be seen that, while the space and time coordinates depend on the reference
frame, the combination

x20 � .ct/2 � r2 � x24 � x21 � x22 � x23 (2.5a)

is relativistically invariant under any change of frame (its square root is Minkowski’s
proper interval). This formula can alternatively be written as

x24 D x20 C x21 C x22 C x23 : (2.5b)
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The dependence of the measured time on the inertial frame (the �ˇx term in
Eq. 2.4b), which entails � ¤ 1, stems from the invariance of c with respect to the
frame. Einstein’s equivalence relation E D mc2 arises from the resulting intrication
of space and time. One of the clues that led de Broglie to the idea of matter waves
(and to the explanation of quantization rules in atomic spectra by assuming standing
waves in electron orbits) was a comparison of this relation with that expressing the
quantization of light, E D h c/�, which yields m D h/� c for photons and, by analogy,
�D h/mv for particles with non-zero rest mass.

The Dirac equation was derived in several steps [5, 6], starting with the time-
dependent wave equation for a free particle in the Schrödinger representation:

i„ @‰

@t
D H ‰; or i„ @‰

@.ct/
D mc ‰; (2.6)

where the Hamiltonian operator was given the relativistic form: H D mc2. The term
expressing the external motion is embedded in the relativistic formula for the mass:
m D m0� . In order to unveil this term, H is transformed to the form

H D mc2 D
�

m2
0c
6

.c2 � v2/


1=2

D
�

m2
0c
4 C m2

0c
4v2

.c2 � v2/


1=2

D

D 


m2
0c
4 C p2c2

�1=2 D 


m2
0c
2 C p2

�1=2
c;

or mc D 


m2
0c
2 C p2

�1=2
; (2.7a)

with p D m0�v D mv D p0� . When v � c, H reduces to the usual form: H0 D
.m0c

2C/ p20=2m0 .C : : :/.
In Eq. (2.7a), p2 D p21 C p22 C p23 with pi D mvi along xi, and from Eqs. (2.5)

and (2.6) one can define an additional ‘momentum’ p4 � mc, corresponding to the
time ‘coordinate’ x4 � ct, and an invariant ‘momentum’ p0 � m0c, for a particle at
rest. Equation (2.7a) can then be written as

p24 D p20 C p21 C p22 C p23: (2.7b)

Comparing Eqs. (2.7b) and (2.5b) shows that the relativistically invariant ‘mo-
mentum’ p0 corresponds to the relativistically invariant ‘coordinate’ x0. To the
‘Pythagorean relation’ between the generalized coordinates, x24 D x20 C r2, cor-
responds a similar relation between the generalized momenta, p24 D p20 C p2.

By analogy with the non-relativistic case, one can write

p1 ! �i„ @

@x
; p2 ! �i„ @

@y
; p3 ! �i„ @

@z
; p4 ! i„ @

@.ct/
; (2.8)
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the last expression being introduced to bring time on the same footing as the space
coordinates. At this stage, the operator associated with p0 is just p0. Equation (2.6)
can then be written as

h

p4 � 


p20 C p21 C p22 C p23
�1=2

i

‰ D 0; (2.9)

which is linear in p4 but not in the other pi’s and, therefore, not fully satisfactory
from the relativistic point of view.

The second step was thus to multiply this equation on the left side by
h

p4 C 


p20 C p21 C p22 C p23
�1= 2

i

, yielding the more symmetric form

�

p24 � 


p20 C p21 C p22 C p23
��

‰ D 0; (2.10)

where only those solutions belonging to positive values of p4 are also solutions of
Eq. (2.9). This is the so-called Klein-Gordon equation, which reduces to the wave
equation for m0 D 0 and is suitable for the description of zero-spin free particles.

Although Eq. (2.10) fulfils the relativistic condition of space-time equivalence,
it does not fulfil the quantum requirement of linearity so that the superposition
principle, probability density formula and uncertainty principle could apply [5, 6].

The third step was to look for an analogous equation linear in all p	’s, that is,

Œp4 � .˛0p0 C ˛1p1 C ˛2p2 C ˛3p3/�‰ D 0; (2.11)

where the ˛	’s must be matrices independent of the p	’s and of the x	’s in free
space. Multiplying to the left side by [p4 C (˛0p0 C ˛1p1 C ˛2p2 C ˛3p3)] yields

h

p24 � .˛0p0 C ˛1p1 C ˛2p2 C ˛3p3/
2
i

‰ D 0: (2.12)

This coincides with Eq. (2.10) only if one has, for 	, �D 0, 1, 2, 3:

˛2	 D 1; ˛	˛� C ˛�˛	 D 0: (2.13)

In addition to being normalized and anticommutative, these matrices, of course,
must be Hermitian. These conditions are similar to those for the three components
�x, �y, � z of the spin operator � and of their Pauli representations as 2D matrices:

�x � .0 1/ �y � .0 � i/ �z � .C1 0/

.1 0/ .Ci 0/ .0 � 1/ (2.14)

But now we have four components for the four-vector (p1, p2, p3, p0), and the
four ˛	 matrices fulfil the above requirements only if they possess at least four
dimensions; e.g. [5, 6], using the 2D Pauli matrices as off-diagonal elements of the
4D Dirac matrices relative to the p	’s:
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˛1 � .0 � x/ ˛2 � .0 � y/ ˛3 � .0 � z/ ˛0 � .C1 0/

.� x 0/ .� y 0/ .� z 0/ .0 � 1/ : (2.15)

A result is that for a vector to be representative of the wave function � it must
have four components or, alternatively, that � must contain a variable taking on
four values. Dirac has explained why the electron has spin, which was known as
requiring the wave function � to have two components, and that this number must
be doubled because the quasi-linear Eq. (2.11), which is equivalent to the quadratic
Eq. (2.10) under the conditions (2.13), has additional, negative-energy solutions,
which he assigned to an antielectron having opposite charge [5].

As expected, Eq. (2.11) is invariant under Lorentz transformations [5, 6]. It was
noticed by de Broglie [6] that the process leading from Eq. (2.10) to (2.11) is
similar to that leading from the second-order equations for the electric and magnetic
fields E and B of electromagnetic radiation to the four coupled, first-order, Lorentz-
invariant Maxwell equations.

Although spin was first introduced phenomenologically (see Sect. 2.4) and shown
to require only 2D matrices for its representation (Eq. 2.14), the theoretical proof for
its existence required a four-component wave vector, yielding additional negative-
energy states. This hints that spin, as well as Zitterbewegung (see Sect. 2.4), must
be related to these states. This appears in the entanglement of the four components
of � when Eq. (2.11) is written explicitly in the form of four coupled equations [6].

One may notice that the matrices ˛i multiplying the components pi of the
momentum that describe the external trajectory of the particle are off-diagonal,
whereas the matrix ˛0 multiplying the momentum p0 related to the rest mass energy
m0c2 is diagonal. This suggests there is some internal motion orthogonal to the
external trajectory, as hinted in Eq. (2.7b) where the generalized momentum mc
appears as a Pythagorean sum of the two orthogonal momenta m0c and p.

Indeed, three internal motions (which have been shown to be related) have
been discussed by Dirac from his equation. One involves the well-established spin
angular momentum, which gives rise to the measured magnetic moment; another is
the Zitterbewegung (proper oscillatory motion) derived by Schrödinger from Dirac’s
equation; and finally there is an internal motion adding to that defining the external
trajectory of the particle to give it the computed velocity c. We shall comment on
these three motions.

2.4 The Electron Internal Motion: Spin, Zitterbewegung,
and Light Velocity

The electron spin entered quantum mechanics in two different ways. The first was
the explanation, by Goudsmit and Uhlenbeck (1925), of the Zeeman splitting of
the spectral lines of atoms by a magnetic field (1896) and of the Stern and Gerlach
deflection of the trajectory of atoms by an inhomogeneous field (1922). The electron
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was endowed with an intrinsic magnetic moment and, since it has electric charge,
with a rotational internal motion adding to its quantized motion around a nucleus.
This electron property was later shown to be responsible for most of materials’
magnetism, known for long: ferro (and anti) and ferri (and anti), as well as para
(but not dia). Electron paramagnetic resonance (EPR) spectroscopy and related
techniques [7] are based on this property, and on a similar property proposed by
Pauli for nuclei [1924], which is at the basis of nuclear magnetic resonance (NMR).

Various models have been designed to account for the magnetic properties of the
electron [6]. In the simple model of a loop with radius r described by a point charge
�e, the measured magnitude of the induced magnetic moment � orthogonal to the
loop can be used to derive the rotational velocity v:

	 D I:S D
��e:v
2�r

	

:�r2 D � e:v r

2

D �
�
1

2

�
e „
2m0

! v D „
2m0r

:

(2.16)

If one identifies r with the measured Compton radius, rC D -h/2 m0c (Sect. 2.2 and
Eq. 2.34), this formula yields: v D c!

The second intrusion of the electron spin came through a non-energetic, sym-
metry requirement, the so-called Fermi-Dirac statistics for systems of identical,
half-integer spin particles, which results in total antisymmetry of the Schrödinger
wave function in a combined space and spin coordinate domain. This entails the
Pauli exclusion principle (1925) in the framework of the independent-particle,
Slater-determinantal model. The expression of atomic and molecular wave functions
as linear combinations of Slater determinants has been the basis of most of the sub-
sequent methodologies of quantum chemistry, thermodynamics, and spectroscopy.

These two aspects of the electron spin, that of an internal dynamical variable
introduced to satisfy a symmetry requirement and that related to an intrinsic
magnetic moment interacting with an external field, were elucidated by Dirac from
his quantum-relativistic equation. But it also yielded an electron moving at the speed
of light!

To have the electron magnetic moment show up, it is necessary to make it interact
with an external magnetic field; and to have its spin momentum appear, it has to be
combined with an orbital momentum. Equation (2.11) was thus extended to include
interactions with an electromagnetic field. Let us call A4 and A the scalar and vector
potentials in MKSA units (in earlier formulations of the Dirac equation [5, 6], A was
divided by c due to the use of cgs units). We can write

��

p4 C e A4

c

�

� ˛0p0 � ˛:
�

p C e A
�

	


‰ D 0: (2.17)

It can be noticed that the internal momentum p0 remains unchanged in the presence
of a field. In the Heisenberg picture, which is more suitable to make comparisons
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between classical and quantum mechanics, the equations of motion are determined
by the Hamiltonian

H D c p4 D �e A4 C c˛0p0 C c˛:.p C e A
�
/�: (2.18)

This gives, using the forms and properties of the ˛	 matrices (Eqs. 2.13, 2.14, and
2.15), especially the fact that ˛0 is normalized and anticommutes with ˛i (i D 1, 2,
3) while commuting with (p C eA):

�

p4 C e A4

c

�2

D �

˛0p0 C ˛:.p C e A
�
/
�2 D p20 C �

� :.p C e A
�
/
�2
: (2.19)

If one uses the general relation for any two 3D vectors C and D commuting with the
� i’s, which results from the properties of the Pauli matrices (Eqs. 2.14),

.� :C
�
/:.� :D

�
/� C

�
:D

�
D i � :C

�
	D

�
;

one obtains for C D D D (p C eA), substituting p D�i -hr then B (r, t) D r 	 A (r, t),

h

� :.p C e A/
i2 � .p C e A/2 D i e � : .p 	AC A 	 p/ D

D „ e � : r
�

	 A D „ e � :B
�
:

Equation (2.19) then becomes

�

p4 C e A4

c

�2

D p20 C .p C e A/2 C e „ � :B
�
: (2.20)

In order to compare this expression with the non-relativistic one, H is written in
the perturbative form: H D m0c2 C H0. To first order, this yields

H 0 D �e A4 C .p C e A/2

2m0

C
�
e „
2m0

�

� :B: (2.21)

In addition to the potential and kinetic energy terms of the classical Hamiltonian
for a slow electron, there appears an extra term, which can be seen as expressing
the interaction of the electron with a magnetic field B through an intrinsic magnetic
moment, 	D �(e -h/2m0) � , in agreement with Eq. (2.16). This extra term arises
naturally from the factor � embedded in Eq. (2.19).

The spin angular momentum itself does not give rise to any potential energy. To
show its existence, Dirac computed the angular momentum integrals for an electron
moving in a central electric field, that is, from Eq. (2.18):

H D �e A4.r/C c ˛0p0 C c ˛:p: (2.22)
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In the Heisenberg picture, one obtains, for the l1 component, say, of the orbital
angular momentum l D �i -hr 	 r,

i„ @l1

@t
D Œl1;H � D c Œl1:.˛p/ � .˛p/:l1� D
D c ˛.l1:p � p: l1/ D �i„ c

�
.˛3:p2 � ˛2:p3/ ¤ 0I

(2.23)

similarly, for the corresponding component of the Pauli matrix operator,

i„ @�1

@t
D Œ�1;H� D c Œ�1:.˛p/� .˛p/:�1� D
D c .�1˛ � ˛�1/:p D 2 i c .˛3:p2 � ˛2:p3/ ¤ 0:

(2.24)

From Eq. (2.23) it is seen that l1 is not a constant of the motion, but from Eq. (2.24)
it is seen that

@l1

@t
C
�„
2

�
@�1

@t
D 0: (2.25)

Dirac interpreted this as the electron having a spin angular momentum, s D (-h/2)
� , that has to be added to the orbital angular momentum l to get a constant of the
motion. It is the same matrix/operator vector � that fixes the direction of s and that
of the magnetic moment � derived from Eq. (2.21), and this justifies the simple
model leading to Eq. (2.16).

Following considerations developed by Bohr, Darwin, and Pauli, de Broglie [6]
showed that it is not possible to separate the electron spin momentum from its
orbital momentum because, in any direct measurement, the uncertainties on the
components of the orbital momentum would be larger than the spin momentum.
This is due to the electron having a finite size, defined by the Compton radius.

Equations (2.25) and (2.21) do not tell us at which velocity the electron ‘rotates’
to acquire kinetic and magnetic spin momenta. This is provided by another compu-
tation by Dirac [5]. He used a Heisenberg picture with a field-free Hamiltonian (but
the conclusion would also hold with a field present):

H D c .˛0p0 C ˛1p1 C ˛2p2 C ˛3p3/: (2.26)

The linear momentum p obviously commutes with H and thus is a constant of the
motion. Making use of the properties of the ˛k’s (Eqs. 2.13), one can further write,
for an arbitrary component vk (k D 1, 2, 3) of the electron velocity,

i„ @xk

@t
D Œxk;H� D c .xk ˛:p � ˛:p xk/ D c ˛k .xkpk � pkxk/

D i„ c ˛k ! vk D
ˇ
ˇ
ˇ
ˇ

@xk

@t

ˇ
ˇ
ˇ
ˇ

D ˙c;
(2.27)
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showing the electron moves at light velocity! If we used the classical expression for
the energy of a free particle, H D p2/2 m0, in Eq. (2.26), we would recover, through
Eq. (2.27), the classical relation between velocity and momentum, vk D pk/m0,
which we expect also to hold in the relativistic case.

The paradox was elucidated through the ‘trembling motion’ (Zitterbewegung)
discovered by Schrödinger [8] while investigating the velocity operators ˛k in-
troduced by Dirac to linearize his equation. The equation of motion of a velocity
component, vk D c˛k, can be written as

i„ @˛k

@t
D ˛kH �H˛k:

Since c ˛k anticommutes with all the terms in Eq. (2.26) except c ˛kpk, one also has

˛kH CH˛k D ˛k.c ˛kpk/C .c ˛kpk/ ˛k D 2cpk:

These two equations together yield

i„ @˛k

@t
D 2˛kH � 2cpk:

Since H and pk are time independent, this entails

i„ @2˛k

@t2
D 2

�
@˛k

@t

�

H:

This differential equation in @˛k/@t can be integrated twice, yielding the explicit
time dependence of the velocity, then position, operators. One first obtains

vk D c ˛k D c2pkH
�1 C

�
i„c
2

�

�0ke
�i!tH�1; (2.28)

where !D 2H/-h and �0k D @˛k=@t at t D 0. As H D mc2, the first term is a constant
of the order of pk/m, the classical relation between momentum and velocity. But
there is an extra term, here also, oscillating at the frequency:

�0 D 2mc2

h
; (2.29)

which stems mainly from the rest mass energy m0c2 in the power expansion of H
following Eq. (2.7a).

Only the constant part is observed in a practical measurement, which gives
the average velocity through a time interval much larger than ��1; whereas the
oscillatory part explains why the instantaneous velocity has eigenvalues˙c [5, 6].
Further integration yields the time dependence of the electron coordinate xk, and it
is seen that the amplitude of the oscillatory motion is of the order of -h/2m0c, the
Compton radius of the relativistic electron (Sect. 2.2 and Eq. 2.34).
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Zitterbewegung vanishes when one takes expectation values over wave packets
made up solely of positive (or negative) energy states [8], which are not full solu-
tions of the wave equation because of the coupling of the four components of �
in Eq. (2.11). This motion was interpreted as being due to a wave beat between
the states with energies ˙mc2, the beat frequency being the difference of the two
wave frequencies: ˙mc2/h [6]. It was also shown (e.g. [9]) that transitions between
positive and negative energy states are possible whenever the electron potential
energy undergoes variations of at least m0c2 over distances of at most h/m0c. This
is another clue that the Compton wavelength, internal motion, and negative energy
states are deeply related. Recently [10] it has been shown that Zitterbewegung can
affect harmonic generation by strong laser pulse and that stimulated Zitterbewegung
can be generated by laser-induced transitions between positive and negative energy
states.

Comparing the preceding results with those expressed in Eqs. (2.16) and (2.21)
makes it clear that the internal motion giving rise to the kinetic and magnetic spin
momenta is nothing but Zitterbewegung. A classical relativistic model was proposed
[11] in which spin appears as the orbital angular momentum of Zitterbewegung.
Moreover, the quantum-relativistic relation of the Zitterbewegung frequency to the
inertial mass together with the general-relativistic equivalence of this latter to the
gravitational mass establish a link between spin and gravitation. In a stochastic
electrodynamics (SED) model [12], Zitterbewegung arises from the electromagnetic
interaction of a semi-classical particle with the vacuum zero-point field, and the
van der Waals force generated by this oscillatory motion is identified with the
Newtonian gravitational field. More generally, there have been various attempts to
involve general relativity into quantum mechanics (e.g. [13, 14]) or to derive one
from the other (e.g. [15, 16]).

In his detailed analysis of Dirac’s theory [6], de Broglie pointed out that, in
spite of his equation being Lorentz invariant and its four-component wave function
providing tensorial forms for all physical properties in space-time, it does not have
space and time playing full symmetrical roles, in part because the condition of
hermiticity for quantum operators is defined in the space domain while time appears
only as a parameter. In addition, space-time relativistic symmetry requires that
Heisenberg’s uncertainty relations,

�pi:�xi � „ .i D 1; 2; 3/; (2.30)

be completed by a similar relation for the energy, the ‘time component’ of the four-
vector momentum whose space components are the pi’s. This did not seem to be
consistent with the energy corresponding to the Hamiltonian H rather than to the
operator i-h @/@t. However, consistency can be recovered by writing

�H:�t D �.mc2/:�t D �.mc/:�.ct/ D �.p4/:�.x4/ � „; (2.31)

assigning the full momentum p4 D mc to the time component x4 D ct, the corre-
sponding operator being i-h @/@(ct), in accordance with Eq. (2.8).
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If, in Eq. (2.31), mc is replaced by m0�c (with � defined in Eqs. 2.4), it comes

�.m0�c/:�.ct/ D �.m0c/:�.ct�/ D �.m0c/:�.c�0/ � „; (2.32)

where �0 is the proper time of the electron, which defines its internal clock. To the
internal time coordinate c�0 D x0 is associated the rest mass momentum m0c D p0.
If one removes the �’s, one obtains

m0c:c�0 � „ ! �0 � „
m0c2

D 1

2��0
; (2.33)

where �0 is half the Zitterbewegung frequency for the electron at rest. For this latter,
pi D 0 (i D 1, 2, 3) and, using the expression for ˛0 in Eq. (2.15) and the vector form
for � , Eq. (2.11) reduces to

i„ @‰j

@t
D Cm0c

2‰j ! ‰j D ‰j0 exp .�2�i�0t/ D ‰j0 exp

�

� i t
�0

�

;

i„ @‰k

@t
D �m0c

2‰k ! ‰k D ‰k0 exp .C2�i�0t/ D ‰k0 exp

�

C i t

�0

�

;

where j D 1, 2; k D 3, 4; and �0 D m0c2/h. The difference (beat) frequency �0
0 D 2�0

of the positive and negative energy states is the Zitterbewegung frequency for the
electron at rest. In the complex exponential argument, �0 � 1.29 	 10�21 s defines
the time scale of the electron internal motion.

2.5 The Electron Radii

The spin angular momentum and associated magnetic moment of the electron
emerged naturally from Dirac’s quantum-relativistic treatment. What also came out
from the Dirac equation is that the oscillatory motion (Zitterbewegung) giving rise
to these momenta involves negative energy states and takes place at light velocity.
As the rest masses of both electron and positron are non-zero, one may wonder why
they do not go to infinity at that velocity. A first clue is that, since the electron and
positron ‘rest masses’ are opposite and since the ‘trembling motion’ involves both
positive and negative energy states, the ‘vibrating entity’ has zero average mass,
departures from this value being allowed by Heisenberg’s uncertainty principle.

There have been a number of speculations on the foundations of inertia, gra-
vitation, and mass (e.g. [15–17]). In the following, we present a novel conjecture
based on the previous discussion.

Let us consider again the simple classical picture of a particle endowed with
charge e and mass m0 moving at velocity c around a loop of radius rC. In this
picture, the intrinsic angular momentum would be s D m0c.rC D rC.2�-h/�C, from
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the definition of �C in Eq. (2.3). As in the Bohr model for the orbital motion of an
electron around a nucleus, the spin s/-h of the electron takes a (half) integer value
if the loop circumference 2�rC involves a (half) integer number of wavelengths
�C (the ‘half’ stemming from the loop being actually a sphere in space-time).
This ‘loop’ could then be considered as some kind of ‘intrinsic orbit’ with radius
rC D�C/4� . From the definition of the Compton wavelength (Eq. 2.3), one may
express the rest mass as a function of the inverse of this ‘orbit radius’:

m0 D „
2c rC

; rC D �C

4�
: (2.34)

One may then say that this intrinsic orbit (which defines the ‘internal structure’
of the particle) is described at velocity c (as results from the Dirac equation), while
the external orbit (in an atom for instance) is described at velocity v. However, this
makes it necessary to consider that the charged entity describing the intrinsic orbit
has zero rest mass. This suggests that the rest mass observed with respect to an
external body (such as an atomic nucleus) arises from the very intrinsic motion of
the charged entity at velocity c.

The above picture should, of course, be amended to account for the contraction
of the loop radius with this fast motion. In fact, if a charged entity describes a
spherical motion at light velocity it should look as punctual to an external observer
(or a nucleus). But this would violate Heisenberg’s uncertainty principle. The
quantization condition of the ‘intrinsic orbit’ can actually be recovered from the
relation:�p.�r � -h/2 (the quotient 2 being due to the half-integer value of the spin).
If one replaces �r by rC and �p by m0c then rC can be written as rC � -h/2 m0c,
yielding 4�rC � h/m0c D�C, the Compton wavelength. This derivation is similar to
that of the Bohr radius a0 (which expresses the non-collapse of the electron onto the
nucleus) by substituting�r by a0 and�p by p in the quantum condition,�p.�r � -h,
and using the balance condition: p2=m a0 D e2=4�"0a

2
0.

It should be noted, however, that, while we know what holds the electron in
a confined region around the Bohr radius, the attraction by the nucleus, we do
not know what holds the conjectured, massless charged entity in a confined region
around the Compton radius. One may think of a pressure generated by interactions
with virtual particles of the Dirac sea, yielding a kind of Brownian motion at the
subquantum level, the Zitterbewegung. However, contrary to the Brownian motion,
the electron internal motion is not random, since it gives rise to observable spin
momentum and magnetic moment.

Another property of the electron is the so-called classical radius r0, which is the
size that the electron would need to have its rest mass m0 entirely due to its electric
potential energy E0. According to classical electrostatics, the energy required to
assemble a sphere of radius r0 and charge e is given by E0 D k e2/4�"0r0, where
k D ½ if the charge is evenly distributed on the surface and grows larger for a
density increasing towards the centre. Assuming all the rest mass energy m0c2 is of
electrostatic origin yields, for k D 1, r0 D e2/4�"0m0c2 (Table 2.1). This is the length
scale at which renormalization becomes important in quantum electrodynamics.


