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Foreword by the Editors

We are very pleased to write the Foreword of this book by René Lamour, Roswitha
März, and Caren Tischendorf. This book appears as the first volume in the recently
established series “FORUM DAEs”—a forum which aims to present different di-
rections in the widely expanding field of differential-algebraic equations (DAEs).

Although the theory of DAEs can be traced back earlier, it was not until the 1960s
that mathematicians and engineers started to study seriously various aspects of
DAEs, such as computational issues, mathematical theory, and applications. DAEs
have developed today, half a century later, into a discipline of their own within
applied mathematics, with many relationships to mathematical disciplines such as
algebra, functional analysis, numerical analysis, stochastics, and control theory, to
mention but a few. There is an intrinsic mathematical interest in this field, but this
development is also supported by extensive applications of DAEs in chemical, elec-
trical and mechanical engineering, as well as in economics.

Roswitha März’ group has been at the forefront of the development of the math-
ematical theory of DAEs since the early 1980s; her valuable contribution was to
introduce—with a Russian functional analytic background—the method now known
as the “projector approach” in DAEs. Over more than 30 years, Roswitha März
established a well-known group within the DAE community, making many funda-
mental contributions. The projector approach has proven to be valuable for a huge
class of problems related to DAEs, including the (numerical) analysis of models
for dynamics of electrical circuits, mechanical multibody systems, optimal control
problems, and infinite-dimensional differential-algebraic systems.

Broadly speaking, the results of the group have been collected in the present
textbook, which comprises 30 years of development in DAEs from the viewpoint of
projectors. It contains a rigorous and stand-alone introduction to the projector ap-
proach to DAEs. Beginning with the case of linear constant coefficient DAEs, this
approach is then developed stepwise for more general types, such as linear DAEs
with variable coefficients and nonlinear problems. A central concept in the theory
of DAEs is the “index”, which is, roughly speaking, a measure of the difficulty of
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vi Foreword by the Editors

(numerical) solution of a given DAE. Various index concepts exist in the theory
of DAEs; and the one related to the projector approach is the “tractability index”.
Analytical and numerical consequences of the tractability index are presented. In ad-
dition to the discussion of the analytical and numerical aspects of different classes
of DAEs, this book places special emphasis on DAEs which are explicitly motivated
by practice: The “functionality” of the tractability index is demonstrated by means
of DAEs arising in models for the dynamics of electrical circuits, where the index
has an explicit interpretation in terms of the topological structure of the intercon-
nections of the circuit elements. Further applications and extensions of the projector
approach to optimization problems with DAE constraints and even coupled systems
of DAEs and partial differential equations (the so-called “PDAEs”) are presented.

If one distinguishes strictly between a textbook and a monograph, then we con-
sider the present book to be the second available textbook on DAEs. Not only is it
complementary to the other textbook in the mathematical treatment of DAEs, this
book is more research-oriented than a tutorial introduction; novel and unpublished
research results are presented. Nonetheless it contains a self-contained introduction
to the projector approach. Also various relations and substantial cross-references to
other approaches to DAEs are highlighted.

This book is a textbook on DAEs which gives a rigorous and detailed mathemat-
ical treatment of the subject; it also contains aspects of computations and applica-
tions. It is addressed to mathematicians and engineers working in this field, and it
is accessible to students of mathematics after two years of study, and also certainly
to lecturers and researchers. The mathematical treatment is complemented by many
examples, illustrations and explanatory comments.

Ilmenau, Germany Achim Ilchmann
Hamburg, Germany Timo Reis
June 2012



Preface

We assume that differential-algebraic equations (DAEs) and their more abstract ver-
sions in infinite-dimensional spaces comprise great potential for future mathemat-
ical modeling. To an increasingly large extent, in applications, DAEs are automat-
ically generated, often by coupling various subsystems with large dimensions, but
without manifested mathematically useful structures. Providing tools to uncover and
to monitor mathematical DAE structures is one of the current challenges. What is
needed are criteria in terms of the original data of the given DAE. The projector
based DAE analysis presented in this monograph is intended to address these ques-
tions.

We have been working on our theory of DAEs for quite some time. This theory
has now achieved a certain maturity. Accordingly, it is time to record these devel-
opments in one coherent account. From the very beginning we were in the fortunate
position to communicate with colleagues from all over the world, advancing differ-
ent views on the topic, starting with Linda R. Petzold, Stephen L. Campbell, Werner
C. Rheinboldt, Yuri E. Boyarintsev, Ernst Hairer, John C. Butcher and many others
not mentioned here up to John D. Pryce, Ned Nedialkov, Andreas Griewank. We
thank all of them for stimulating discussions.

For years, all of us have taught courses, held seminars, supervised diploma stu-
dents and PhD students, and gained fruitful feedback, which has promoted the
progress of our theory. We are indebted to all involved students and colleagues,
most notably the PhD students.

Our work was inspired by several fascinating projects and long term cooper-
ation, in particular with Roland England, Uwe Feldmann, Claus Führer, Michael
Günther, Francesca Mazzia, Volker Mehrmann, Peter C. Müller, Peter Rentrop, Ewa
Weinmüller, Renate Winkler.

We very much appreciate the joint work with Katalin Balla, who passed away
too early in 2005, and the colleagues Michael Hanke, Immaculada Higueras, Galina
Kurina, and Ricardo Riaza. All of them contributed essential ideas to the projector
based DAE analysis.
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We are indebted to the German Federal Ministry of Education and Research
(BMBF) and the German Research Foundation (DFG), in particular the research
center MATHEON in Berlin, for supporting our research in a lot of projects.

We would like to express our gratitude to many people for their support in the
preparation of this volume. In particular we thank our colleague Jutta Kerger.

Last but not least, our special thanks are due to Achim Ilchmann and Timo Reis,
the editors of the DAE Forum. We appreciate very much their competent counsel
for improving the presentation of the theory.

We are under obligations to the staff of Springer for their careful assistance.

René Lamour Roswitha März Caren Tischendorf



Contents

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Part I Projector based approach

1 Linear constant coefficient DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Regular DAEs and the Weierstraß–Kronecker form . . . . . . . . . . . . . . 3
1.2 Projector based decoupling of regular DAEs . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Admissible matrix sequences and admissible projectors . . . . 10
1.2.2 Decoupling by admissible projectors . . . . . . . . . . . . . . . . . . . . 23
1.2.3 Complete decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.2.4 Hierarchy of projector sequences for constant

matrix pencils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.2.5 Compression to a generalized Weierstraß–Kronecker form . . 37
1.2.6 Admissible projectors for matrix pairs in a generalized

Weierstraß–Kronecker form . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.3 Transformation invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.4 Characterizing matrix pencils by admissible projectors . . . . . . . . . . . 47
1.5 Properly stated leading term and solution space . . . . . . . . . . . . . . . . . 50
1.6 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2 Linear DAEs with variable coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.1 Properly stated leading terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2 Admissible matrix function sequences . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.2.2 Admissible projector functions and characteristic values . . . . 65
2.2.3 Widely orthogonal projector functions . . . . . . . . . . . . . . . . . . . 75

2.3 Invariants under transformations and refactorizations . . . . . . . . . . . . . 79
2.4 Decoupling regular DAEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.4.1 Preliminary decoupling rearrangements . . . . . . . . . . . . . . . . . . 86

ix



x Contents

2.4.2 Regularity and basic decoupling of regular DAEs . . . . . . . . . 90
2.4.3 Fine and complete decouplings . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.4.3.1 Index-1 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.4.3.2 Index-2 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2.4.3.3 General benefits from fine decouplings . . . . . . . . . . 108
2.4.3.4 Existence of fine and complete decouplings . . . . . . 111

2.5 Hierarchy of admissible projector function sequences for linear
DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.6 Fine regular DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2.6.1 Fundamental solution matrices . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.6.2 Consistent initial values and flow structure . . . . . . . . . . . . . . . 123
2.6.3 Stability issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
2.6.4 Characterizing admissible excitations

and perturbation index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
2.7 Specifications for regular standard form DAEs . . . . . . . . . . . . . . . . . . 137
2.8 The T-canonical form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
2.9 Regularity intervals and critical points . . . . . . . . . . . . . . . . . . . . . . . . . 146
2.10 Strangeness versus tractability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

2.10.1 Canonical forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
2.10.2 Strangeness reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
2.10.3 Projector based reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

2.11 Generalized solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
2.11.1 Measurable solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
2.11.2 Distributional solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

2.12 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

3 Nonlinear DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
3.1 Basic assumptions and notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

3.1.1 Properly involved derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
3.1.2 Constraints and consistent initial values . . . . . . . . . . . . . . . . . 187
3.1.3 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

3.2 Admissible matrix function sequences and admissible projector
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

3.3 Regularity regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
3.4 Transformation invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
3.5 Hessenberg form DAEs of arbitrary size . . . . . . . . . . . . . . . . . . . . . . . 229
3.6 DAEs in circuit simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
3.7 Local solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

3.7.1 Index-1 DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
3.7.2 Index-2 DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

3.7.2.1 Advanced decoupling of linear index-2 DAEs . . . . 259
3.7.2.2 Nonlinear index-2 DAEs . . . . . . . . . . . . . . . . . . . . . . 261
3.7.2.3 Index reduction step . . . . . . . . . . . . . . . . . . . . . . . . . . 268

3.8 Advanced localization of regularity: including jet variables . . . . . . . . 272
3.9 Operator settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281



Contents xi

3.9.1 Linear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3.9.2 Nonlinear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

3.10 A glance at the standard approach via the derivative array
and differentiation index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

3.11 Using structural peculiarities to ease models . . . . . . . . . . . . . . . . . . . . 300
3.12 Regularity regions of DAEs with quasi-proper leading terms . . . . . . 304
3.13 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Part II Index-1 DAEs: Analysis and numerical treatment

4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
4.1 Basic assumptions and notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
4.2 Structure and solvability of index-1 DAEs . . . . . . . . . . . . . . . . . . . . . . 320
4.3 Consistent initial values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
4.4 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

5 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
5.1 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
5.2 Methods applied to ODEs and DAEs in standard form . . . . . . . . . . . . 345

5.2.1 Backward differentiation formula . . . . . . . . . . . . . . . . . . . . . . . 345
5.2.2 Runge–Kutta method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
5.2.3 General linear method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

5.3 Methods applied to DAEs with a properly involved derivative . . . . . 352
5.3.1 Backward differentiation formula . . . . . . . . . . . . . . . . . . . . . . . 352
5.3.2 Runge–Kutta method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
5.3.3 General linear method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

5.4 When do decoupling and discretization commute? . . . . . . . . . . . . . . . 356
5.5 Convergence on compact intervals and error estimations . . . . . . . . . . 361

5.5.1 Backward differentiation formula . . . . . . . . . . . . . . . . . . . . . . . 361
5.5.2 IRK(DAE) method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
5.5.3 General linear method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

5.6 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

6 Stability issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
6.1 Preliminaries concerning explicit ODEs . . . . . . . . . . . . . . . . . . . . . . . . 375
6.2 Contractive DAEs and B-stable Runge–Kutta methods . . . . . . . . . . . 378
6.3 Dissipativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
6.4 Lyapunov stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
6.5 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Part III Computational aspects

7 Computational linear algebra aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
7.1 Image and nullspace projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400



xii Contents

7.2 Matters of a properly stated leading term . . . . . . . . . . . . . . . . . . . . . . . 402
7.3 The basic step of the sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

7.3.1 Basis representation methods . . . . . . . . . . . . . . . . . . . . . . . . . . 406
7.3.2 Basis representation methods—Regular case . . . . . . . . . . . . . 408
7.3.3 Projector representation method . . . . . . . . . . . . . . . . . . . . . . . . 409

7.4 Matrix function sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
7.4.1 Stepping level by level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
7.4.2 Involved version for the regular case . . . . . . . . . . . . . . . . . . . . 415
7.4.3 Computing characteristic values and index check . . . . . . . . . . 416

8 Aspects of the numerical treatment of higher index DAEs . . . . . . . . . . . 419
8.1 Practical index calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
8.2 Consistent initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
8.3 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
8.4 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Part IV Advanced topics

9 Quasi-regular DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
9.1 Quasi-proper leading terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
9.2 Quasi-admissible matrix function sequences and admissible

projector functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
9.3 Quasi-regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
9.4 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
9.5 A DAE transferable into SCF is quasi-regular . . . . . . . . . . . . . . . . . . . 457
9.6 Decoupling of quasi-regular linear DAEs . . . . . . . . . . . . . . . . . . . . . . . 462
9.7 Difficulties arising with the use of subnullspaces . . . . . . . . . . . . . . . . 468
9.8 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
9.9 Hierarchy of quasi-admissible projector function sequences

for general nonlinear DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

10 Nonregular DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
10.1 The scope of interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
10.2 Linear DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

10.2.1 Tractability index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
10.2.2 General decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

10.2.2.1 Gμ has full column rank . . . . . . . . . . . . . . . . . . . . . . 489
10.2.2.2 Tractability index 1, G1 has a nontrivial

nullspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
10.2.2.3 Tractability index 2, G2 has a nontrivial

nullspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
10.3 Underdetermined nonlinear DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
10.4 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502



Contents xiii

11 Minimization with constraints described by DAEs . . . . . . . . . . . . . . . . . 505
11.1 Adjoint and self-adjoint DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
11.2 Extremal conditions and the optimality DAE . . . . . . . . . . . . . . . . . . . . 510

11.2.1 A necessary extremal condition and the optimality DAE . . . . 510
11.2.2 A particular sufficient extremal condition . . . . . . . . . . . . . . . . 520

11.3 Specification for controlled DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
11.4 Linear-quadratic optimal control and Riccati feedback solution . . . . 525

11.4.1 Sufficient and necessary extremal conditions . . . . . . . . . . . . . 526
11.4.2 Riccati feedback solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

11.5 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

12 Abstract differential-algebraic equations . . . . . . . . . . . . . . . . . . . . . . . . . 539
12.1 Index considerations for ADAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
12.2 ADAE examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

12.2.1 Classical partial differential equations . . . . . . . . . . . . . . . . . . . 545
12.2.1.1 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
12.2.1.2 Heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

12.2.2 A semi-explicit system with parabolic and elliptic parts . . . . 548
12.2.3 A coupled system of a PDE and Fredholm

integral equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
12.2.4 A PDE and a DAE coupled by a restriction operator . . . . . . . 554

12.3 Linear ADAEs with monotone operators . . . . . . . . . . . . . . . . . . . . . . . 554
12.3.1 Basic functions and function spaces . . . . . . . . . . . . . . . . . . . . . 555
12.3.2 Galerkin approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
12.3.3 Solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
12.3.4 Continuous dependence on the data . . . . . . . . . . . . . . . . . . . . . 571
12.3.5 Strong convergence of the Galerkin method . . . . . . . . . . . . . . 574

12.4 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

A Linear algebra – basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
A.1 Projectors and subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
A.2 Generalized inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
A.3 Parameter-dependent matrices and projectors . . . . . . . . . . . . . . . . . . . 591
A.4 Variable subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

B Technical computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
B.1 Proof of Lemma 2.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
B.2 Proof of Lemma 2.41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
B.3 Admissible projectors for Nx′+ x = r . . . . . . . . . . . . . . . . . . . . . . . . . 612

C Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
C.1 A representation result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627



xiv Contents

C.2 ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
C.3 Basics for evolution equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647



Notations

Abbreviations

ADAE abstract DAE
BDF backward differentiation formula
DAE differential-algebraic equation
GLM general linear method
IERODE inherent explicit regular ODE
IESODE inherent explicit singular ODE
IVP initial value problem
MNA modified nodal analysis
ODE ordinary differential equation
PDAE partial DAE
SCF standard canonical form
SSCF strong SCF

Common notation

N natural numbers
R real numbers
C complex numbers
K alternatively R or C
K

n n-dimensional vector space
M ∈K

m,n matrix with m rows and n columns
M ∈ L(Kn,Km) linear mapping from K

n into K
m, also for M ∈K

m,n

L(Km) shorthand for L(Km,Km)

MT transposed matrix
M∗ transposed matrix with real or complex conjugate entries
M−1 inverse matrix
M− reflexive generalized inverse of M
M+ Moore–Penrose inverse of M
kerM kernel of M, kerM = {z |Mz = 0}

xv



xvi Notations

imM image of M, imM = {z | z = My, y ∈ R
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G regularity region
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Introduction

Ordinary differential equations (ODEs) define relations concerning function values
and derivative values of an unknown vector valued function in one real independent
variable often called time and denoted by t. An explicit ODE

x′(t) = g(x(t), t)

displays the derivative value x′(t) explicitly in terms of t and x(t). An implicit ODE

f (x′(t),x(t), t) = 0

is said to be regular, if all its line-elements (x1,x, t) are regular. A triple (x1,x, t)
belonging to the domain of interest is said to be a regular line-element of the ODE,
if fx1(x1,x, t) is a nonsingular matrix, and otherwise a singular line-element. This
means, in the case of a regular ODE, the derivative value x′(t) is again fully deter-
mined in terms of t and x(t), but in an implicit manner.

An ODE having a singular line-element is said to be a singular ODE. In turn,
singular ODEs comprise quite different classes of equations. For instance, the linear
ODE

tx′(t)−Mx(t) = 0

accommodates both regular line-elements for t �= 0 and singular ones for t = 0. In
contrast, the linear ODE

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

x′(t)+

⎡
⎢⎢⎢⎢⎣

−α −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

x(t)−

⎡
⎢⎢⎢⎢⎣

0
0
0
0

γ(t)

⎤
⎥⎥⎥⎥⎦
= 0 (0.1)

has solely singular line-elements. A closer look at the solution flow of the last two
ODEs shows a considerable disparity.

xix
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The ODE (0.1) serves as a prototype of a differential-algebraic equation (DAE).
The related equation f (x1,x, t) = 0 determines the components x1

1,x
1
3,x

1
4, and x1

5 of
x1 in terms of x and t. The component x1

2 is not at all given. In addition, there arises
the consistency condition x5− γ(t) = 0 which restricts the flow.

DAEs constitute—in whatever form they are given—somehow uniformly sin-
gular ODEs: In common with all ODEs, they define relations concerning function
values and derivative values of an unknown vector valued function in one real in-
dependent variable. However, in contrast to explicit ODEs, in DAEs these relations
are implicit, and, in contrast to regular implicit ODEs, these relations determine just
a part of the derivative values. A DAE is an implicit ODE which has solely singular
line-elements.

The solutions of the special DAE (0.1) feature an ambivalent nature. On the
one hand they are close to solutions of regular ODEs in the sense that they de-
pend smoothly on consistent initial data. On the other hand, tiny changes of γ may
yield monstrous variations of the solutions, and the solution varies discontinuously
with respect to those changes. We refer to the figures in Example 1.5 to gain an
impression of this ill-posed behavior.

The ambivalent nature of their solutions distinguishes DAE as being extraordi-
nary to a certain extent.

DAEs began to attract significant research interest in applied and numerical math-
ematics in the early 1980s, no more than about three decades ago. In this relatively
short time, DAEs have become a widely acknowledged tool to model processes
subject to constraints, in order to simulate and to control these processes in various
application fields.

The two traditional physical application areas, network simulation in electronics
and the simulation of multibody mechanics, are repeatedly addressed in textbooks
and surveys (e.g. [96, 25, 189]). Special monographs [194, 63, 188] and much work
in numerical analysis are devoted to these particular problems. These two appli-
cation areas and related fields in science and engineering can also be seen as the
most important impetus to begin with systematic DAE research, since difficulties
and failures in respective numerical simulations have provoked the analysis of these
equations first.

The equations describing electrical networks have the form

A(d(x(t), t))′+b(x(t), t) = 0, (0.2)

with a singular constant matrix A, whereas constrained multibody dynamics is de-
scribed by equations showing the particular structure

x′1(t)+b1(x1(t),x2(t),x3(t), t) = 0, (0.3)
x′2(t)+b2(x1(t),x2(t), t) = 0, (0.4)

b3(x2(t), t) = 0. (0.5)
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Those DAEs usually have large dimension. Multibody systems often comprise hun-
dreds of equations and electric network systems even gather up to several millions
of equations.

Many further physical systems are naturally described as DAEs, for instance,
chemical process modeling, [209]. We agree with [189, p. 192] that DAEs arise
probably more often than (regular) ODEs, and many of the well-known ODEs in
application are actually DAEs that have been additionally explicitly reduced to ODE
form.

Further DAEs arise in mathematics, in particular, as intermediate reduced models
in singular perturbation theory, as extremal conditions in optimization and control,
and by means of semidiscretization of partial differential equation systems.

Besides the traditional application fields, conducted by the generally increasing
role of numerical simulation in science and technology, currently more and more
new applications come along, in which different physical components are coupled
via a network.

We believe that DAEs and their more abstract versions in infinite-dimensional
spaces comprise great potential for future mathematical modeling. To an increas-
ingly large extent, in applications, DAEs are automatically generated, often by cou-
pling various subsystems, with large dimensions, but without manifested mathe-
matically useful structures. Different modeling approaches may result in different
kinds of DAEs. Automatic generation and coupling of various tools may yield quite
opaque DAEs. Altogether, this produces the challenging task to bring to light and
to characterize the inherent mathematical structure of DAEs, to provide test crite-
ria such as index observers and eventually hints for creating better qualified model
modifications. For a reliable practical treatment, which is the eventual aim, for nu-
merical simulation, sensitivity analysis, optimization and control, and last but not
least practical upgrading models, one needs pertinent information concerning the
mathematical structure. Otherwise their procedures may fail or, so much the worse,
generate wrong results. In consequence, providing practical assessment tools to un-
cover and to monitor mathematical DAE structures is one of the actual challenges.
What are needed are criteria in terms of the original data of the given DAE. The
projector based DAE analysis presented in this monograph is intended to address
these questions.

Though DAEs have been popular among numerical analysts and in various appli-
cation fields, so far they play only a marginal role in contiguous fields such as non-
linear analysis and dynamical systems. However, an input from those fields would
be desirable. It seems, responsible for this shortage is the quite common view of
DAEs as in essence nothing other than implicitly written regular ODEs or vector
fields on manifolds, making some difficulties merely in numerical integration. The
latter somehow biased opinion is still going strong. It is fortified by the fact that
almost all approaches to DAEs suppose that the DAE is eventually reducible to an
ODE as a basic principle. This opinion is summarized in [189, p. 191] as follows:
It is a fact, not a mere point of view, that a DAE eventually reduces to an ODE on a
manifold. The attitude of acknowledging this fact from the outset leads to a reduc-
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tion procedure suitable for the investigation of many problems . . . . The mechanism
of the geometric reduction procedure completely elucidates the “algebraic” and the
“differential” aspects of a DAE. The algebraic part consists in the characterization
of the manifold over which the DAE becomes an ODE and, of course, the differential
part provides the reduced ODE. Also in [130] the explicit reduction of the general
DAE

f(x′(t),x(t), t) = 0, (0.6)

with a singular partial Jacobian fx′ , into a special reduced form plays a central role.
Both monographs [189, 130] concentrate on related reduction procedures which
naturally suppose higher partial derivatives of the function f, either to provide se-
quences of smooth (sub)manifolds or to utilize a so-called derivative array system.
The differential geometric approach and the reduction procedures represent pow-
erful tools to analyze and to solve DAEs. Having said that, we wonder about the
misleading character of this purely geometric view, which underlines the closed-
ness to regular ODEs, but loses sight of the ill-posed feature.

So far, most research concerning general DAEs is addressed to equation (0.6),
and hence we call this equation a DAE in standard form. Usually, a solution is then
supposed to be at least continuously differentiable.
In contrast, in the present monograph we investigate equations of the form

f ((d(x(t), t))′,x(t), t) = 0, (0.7)

which show the derivative term involved by means of an extra function d. We see
the network equation (0.2) as the antetype of this form. Also the system (0.3)–(0.5)
has this form

⎡
⎣

I 0
0 I
0 0

⎤
⎦
([

x1(t)
x2(t)

])′
+

⎡
⎣

b1(x1(t),x2(t),x3(t), t)
b2(x1(t),x2(t), t)

b3(x2(t), t)

⎤
⎦= 0 (0.8)

a priori. It appears that in applications actually DAEs in the form (0.7) arise, which
precisely indicates the involved derivatives. The DAE form (0.7) is comfortable; it
involves the derivative by the extra nonlinear function d, whereby x(t) ∈ R

m and
d(x(t), t) ∈R

n may have different sizes, as is the case in (0.8). A particular instance
of DAEs (0.7) is given by the so-called conservative form DAEs [52]. Once again,
the idea for version (0.7) originates from circuit simulation problems, in which this
form is well approved (e.g. [75, 168]).

However, though equation (0.7) represents a more precise model, one often trans-
forms it to standard form (0.6), which allows to apply results and tools from differ-
ential geometry, numerical ODE methods, and ODE software.

Turning from the model (0.7) to a standard form DAE one veils the explicit pre-
cise information concerning the derivative part. With this background, we are con-
fronted with the question of what a DAE solution should be. Following the classical
sense of differential equations, we ask for continuous functions being as smooth
as necessary, which satisfy the DAE pointwise on the interval of interest. This is
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a common understanding. However, there are different opinions on the meaning of
the appropriate smoothness. Having regular ODEs in mind one considers contin-
uously differentiable functions x(·) to be the right candidates for solutions. Up to
now, most DAE researchers adopt this understanding of the solution which is sup-
ported by the standard DAE formulation. Furthermore, intending to apply formal
integrability concepts, differential geometry and derivative array approaches one is
led to yet another higher smoothness requirement. In contrast, the multibody sys-
tem (0.8) suggests, as solutions, continuous functions x(·) having just continuously
differentiable components x1(·) and x2(·).

An extra matrix figuring out the derivative term was already used much earlier
(e.g. [153, 152, 154]); however, this approach did not win much recognition at that
time. Instead, the following interpretation of standard form DAEs (e.g. [96]) has
been accepted to a larger extent: Assuming the nullspace of the partial Jacobian
fx′(x′,x, t) associated with the standard form DAE (0.6) to be a C1-subspace, and to
be independent of the variables x′ and x, one interprets the standard form DAE (0.6)
as a short description of the equation

f((P(t)x(t))′ −P′(t)x(t),x(t), t) = 0, (0.9)

whereby P(·) denotes any continuously differentiable projector valued function such
that the nullspaces kerP(·) and ker fx′(x′,x, ·) coincide. This approach is aligned with
continuous solutions x(·) having just continuously differentiable products (Px)(·).
Most applications yield even constant nullspaces ker fx′ , and hence constant projec-
tor functions P as well. In particular, this is the case for the network equations (0.2)
and the multibody systems (0.8).

In general, for a DAE given in the form (0.7), a solution x(·) should be a contin-
uous function such that the superposition u(·) := d(x(·), ·) is continuously differen-
tiable. For the particular system (0.8) this means that the components x1(·) and x2(·)
are continuously differentiable, whereas one accepts a continuous x3(·).

The question in which way the data functions f and d should be related to each
other leads to the notions of DAEs with properly stated leading term or properly
involved derivative, but also to DAEs with quasi-proper leading term. During the
last 15 years, the idea of using an extra function housing the derivative part within
a DAE has been emphatically pursued. This discussion amounts to the content of
this monograph. Formulating DAEs with properly stated leading term yields, in par-
ticular, symmetries of linear DAEs and their adjoints, and further favorable conse-
quences concerning optimization problems with DAE constraints. Not surprisingly,
numerical discretization methods may perform better than for standard form DAEs.
And last, but not least, this approach allows for appropriate generalizations to ap-
ply to abstract differential- algebraic systems in Hilbert spaces enclosing PDAEs.
We think that, right from the design or modeling stage, it makes sense to look for
properly involved derivatives.

This monograph comprises an elaborate analysis of DAEs (0.7), which is ac-
companied by the consideration of essential numerical aspects. We regard DAEs
from an analytical point of view, rather than from a geometric one. Our main ob-
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jective consists in the structural and qualitative characterization of DAEs as they
are given a priori, without supposing any knowledge concerning solutions and con-
straints. Afterwards, having the required knowledge of the DAE structure, also solv-
ability assertions follow. Only then do we access the constraints. In contrast, other
approaches concede full priority of providing constraints and solutions, as well as
transformations into a special form, which amounts to solving the DAE.

We believe in the great potential of our concept in view of the further analysis of
classical DAEs and their extensions to abstract DAEs in function spaces. We do not
at all apply derivative arrays and prolongated systems, which are commonly used
in DAE theory. Instead, certain admissible matrix function sequences and smartly
chosen admissible projector functions formed only from the first partial derivatives
of the given data function play their role as basic tools. Thereby, continuity proper-
ties of projector functions depending on several variables play their role, which is
not given if one works instead with basises. All in all, this allows an analysis on a
low smoothness level. We pursue a fundamentally alternative approach and present
the first rigorous structural analysis of general DAEs in their originally given form
without the use of derivative arrays, without supposing any knowledge concerning
constraints and solutions.

The concept of a projector based analysis of general DAEs was sketched first in
[160, 171, 48], but it has taken its time to mature. Now we come up with a unique
general theory capturing constant coefficient linear problems, variable coefficient
linear problems and fully nonlinear problems in a hierarchic way. We address a
further generalization to abstract DAEs. It seems, after having climbed the (at times
seemingly pathless) mountain of projectors, we are given transparency and beautiful
convenience. By now the projector based analysis is approved to be a prospective
way to investigate DAEs and also to yield reasonable open questions for future
research.

The central idea of the present monograph consists in a rigorous definition of
regularity of a DAE, accompanied with certain characteristic values including the
tractability index, which is related to an open subset of the definition domain of the
data function f , a so-called regularity region. Regularity is shown to be stable with
respect to perturbations. Close relations of regularity regions and linearizations are
proved. In general, one has to expect that the definition domain of f decomposes
into several regularity regions whose borders consist of critical points. Solutions do
not necessarily stay in one of these regions; solutions may cross the borders and
undergo bifurcation, etc.

The larger part of the presented material is new and as yet unpublished. Parts
were earlier published in journals, and just the regular linear DAE framework (also
critical points in this context) is available in the book [194].

The following basic types of DAEs can reasonably be discerned:

� fully implicit nonlinear DAE with nonlinear derivative term

f ((d(x(t), t))′,x(t), t) = 0, (0.10)
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� fully implicit nonlinear DAE with linear derivative term

f ((D(t)x(t))′,x(t), t) = 0, (0.11)

� quasi-linear DAE with nonlinear derivative term (involved linearly)

A(x(t), t)(d(x(t), t))′+b(x(t), t) = 0, (0.12)

� quasi-linear DAE with linear derivative term

A(x(t), t)(D(t)x(t))′+b(x(t), t) = 0, (0.13)

� linear DAE with variable coefficients

A(t)(D(t)x(t))′+B(t)x(t) = q(t), (0.14)

� linear DAE with constant coefficients

A(Dx(t))′+Bx(t) = q(t), (0.15)

� semi-implicit DAE with explicitly given derivative-free equation

f1((d(x(t), t))′,x(t), t) = 0, (0.16)
f2(x(t), t) = 0, (0.17)

� semi-implicit DAE with explicitly partitioned variable and explicitly given
derivative-free equation

f1(x′1(t),x1(t),x2(t), t) = 0, (0.18)
f2(x1(t),x2(t), t) = 0, (0.19)

� semi-explicit DAE with explicitly partitioned variable and explicitly given
derivative-free equation

x′1(t)+b1(x1(t),x2(t), t) = 0, (0.20)
b2(x1(t),x2(t), t) = 0. (0.21)

So-called Hessenberg form DAEs of size r, which are described in Section 3.5,
form further subclasses of semi-explicit DAEs. For instance, the DAE (0.8) has
Hessenberg form of size 3. Note that much work developed to treat higher index
DAEs is actually limited to Hessenberg form DAEs of size 2 or 3.

The presentation is divided into Part I to Part IV followed by Appendices A, B,
and C.

Part I describes the core of the projector based DAE analysis: the construction of
admissible matrix function sequences associated by admissible projector functions
and the notion of regularity regions.



xxvi Introduction

Chapter 1 deals with constant coefficient DAEs and matrix pencils only. We re-
consider algebraic features and introduce into the projector framework. This can be
skipped by readers familiar with the basic linear algebra including projectors.

The more extensive Chapter 2 provides the reader with admissible matrix func-
tion sequences and the resulting constructive projector based decouplings. With this
background, a comprehensive linear theory is developed, including qualitative flow
characterizations of regular DAEs, the rigorous description of admissible excita-
tions, and also relations to several canonical forms and the strangeness index.

Chapter 3 contains the main constructions and assertions concerning general reg-
ular nonlinear DAEs, in particular the regularity regions and the practically impor-
tant theorem concerning linearizations. It is recommended to take a look to Chap-
ter 2 before reading Chapter 3.

We emphasize the hierarchical organization of Part I. The admissible matrix
function sequences built for the nonlinear DAE (0.10) generalize those for the linear
DAE (0.14) with variable coefficients, which, in turn, represent a generalization of
the matrix sequences made for constant coefficient DAEs (0.15).

Part IV continues the hierarchy in view of different further aspects. Chapter 9
about quasi-regular DAEs (0.10) incorporates a generalization which relaxes the
constant-rank conditions supporting admissible matrix function sequences. Chap-
ter 10 on nonregular DAEs (0.11) allows a different number of equations and of
unknown components. Finally, in Chapter 12, we describe abstract DAEs in infinite-
dimensional spaces and include PDAEs.

Part IV contains the additional Chapter 11 conveying results on minimization
with DAE constraints obtained by means of the projector based technique.

Part II is a self-contained index-1 script. It comprises in its three chapters the
analysis of regular index-1 DAEs (0.11) and their numerical integration, addressing
also stability topics such as contractivity and stability in Lyapunov’s sense. Part II
constitutes in essence an up-to-date improved and completed version of the early
book [96]. While the latter is devoted to standard form DAEs via the interpretation
(0.9), now the more general equations (0.11) are addressed.

Part III adheres to Part I giving an elaborate account of computational methods
concerning the practical construction of projectors and that of admissible projector
functions in Chapter 7. A second chapter discusses several aspects of the numer-
ical treatment of regular higher index DAEs such as consistent initialization and
numerical integration.

Appendix B contains technically involved costly proofs. Appendices A and C
collect and provide basic material concerning linear algebra and analysis, for in-
stance the frequently used C1-subspaces.

Plenty of reproducible small academic examples are integrated into the explana-
tions for easier reading, illustrating and confirming the features under consideration.
To this end, we emphasize that those examples are always too simple. They bring to
light special features, but they do not really reflect the complexity of DAEs.
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The material of this monograph is much too comprehensive to be taught in a stan-
dard graduate course. However different combinations of selected chapters should
be well suited for those courses. In particular, we recommend the following:

• Projector based DAE analysis (Part I, possibly without Chapter 1).
• Analysis of index-1 DAEs and their numerical treatment (Part II, possibly plus

Chapter 8).
• Matrix pencils, theoretical and practical decouplings (Chapters 1 and 7).
• General linear DAEs (Chapter 2, material on the linear DAEs of Chapters 10

and 9).

Advanced courses communicating Chapter 12 or Chapter 11 could be given to stu-
dents well grounded in DAE basics (Parts I and II) and partial differential equations,
respectively optimization.
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Projector based approach
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Part I describes the core of the projector based DAE analysis, the construction of ad-
missible matrix function sequences and the notions of regular points and regularity
regions of general DAEs

f ((d(x(t), t))′,x(t), t) = 0

in a hierarchical manner starting with constant coefficient linear DAEs, then turning
to linear DAEs with variable coefficients, and, finally, considering fully implicit
DAEs.

Chapter 1 deals with constant coefficient DAEs and matrix pencils. We recon-
sider algebraic features and introduce them into the projector framework. This
shows how the structure of the Weierstraß–Kronecker form of a regular matrix pen-
cil can be depicted by means of admissible projectors.

The extensive Chapter 2 on linear DAEs with variable coefficients characterizes
regular DAEs by means of admissible matrix function sequences and associated
projectors and provides constructive projector based decouplings of regular linear
DAEs.

Then, with this background, a comprehensive linear theory of regular DAEs is
developed, including qualitative flow properties and a rigorous description of ad-
missible excitations. Moreover, relations to several canonical forms and other index
notions are addressed.

Chapter 3 contains the main constructions and assertions concerning general reg-
ular nonlinear DAEs, in particular the regularity regions and the practically impor-
tant theorem concerning linearizations. Also local solvability assertions and pertur-
bation results are proved.

We emphasize the hierarchical organization of the approach. The admissible ma-
trix function sequences built for the nonlinear DAE (0.10) generalize those for the
linear DAE (0.14) with variable coefficients, which, in turn, represent a general-
ization of the matrix sequences made for constant coefficient DAEs (0.15). Part IV
continues the hierarchy with respect to different views.



Chapter 1
Linear constant coefficient DAEs

Linear DAEs with constant coefficients have been well understood by way of the
theory of matrix pencils for quite a long time, and this is the reason why they are
only briefly addressed in monographs. We consider them in detail here, not because
we believe that the related linear algebra has to be invented anew, but as we intend
to give a sort of guide for the subsequent extensive discussion of linear DAEs with
time-varying coefficients and of nonlinear DAEs.

This chapter is organized as follows. Section 1.1 records well-known facts on reg-
ular matrix pairs and describes the structure of the related DAEs. The other sections
serve as an introduction to the projector based analysis. Section 1.2 first provides the
basic material of this analysis: the admissible matrix sequences and the accompany-
ing admissible projectors and characteristic values in Subsection 1.2.1, the decou-
pling of regular DAEs by arbitrary admissible projectors in Subsection 1.2.2, and
the complete decoupling in Subsection 1.2.3. The two subsequent Subsections 1.2.5
and 1.2.6 are to clarify the relations to the Weierstraß–Kronecker form. Section 1.3
provides the main result concerning the high consistency of the projector based ap-
proach and the DAE structure by the Weierstraß–Kronecker form, while Section 1.4
collects practically useful details on the topic. Section 1.5 develops proper formula-
tions of the leading term of the DAE by means of two well-matched matrices. The
chapter ends with notes and references.

1.1 Regular DAEs and the Weierstraß–Kronecker form

In this section we deal with the equation

Ex′(t)+Fx(t) = q(t), t ∈ I, (1.1)

formed by the ordered pair {E,F} of real valued m×m matrices E,F . For given
functions q : I → R

m being at least continuous on the interval I ⊆ R, we are look-
ing for continuous solutions x : I → R

m having a continuously differentiable com-
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ponent Ex. We use the notation Ex′(t) for (Ex)′(t). Special interest is directed to
homogeneous equations

Ex′(t)+Fx(t) = 0, t ∈ R. (1.2)

For E = I, the special case of explicit ODEs is covered. Now, in the more general
setting, the ansatz x∗(t) = eλ∗t z∗ well-known for explicit ODEs, yields

Ex′∗(t)+Fx∗(t) = eλ∗t(λ∗E +F)z∗.

Hence, x∗ is a nontrivial particular solution of the DAE (1.2) if λ∗ is a zero of the
polynomial p(λ ) := det(λE +F), and z∗ �= 0 satisfies the relation (λ∗E +F)z∗ = 0.
Then λ∗ and z∗ are called generalized eigenvalue and eigenvector, respectively.
This shows the meaning of the polynomial p(λ ) and the related family of matri-
ces λE +F named the matrix pencil formed by {E,F}.

Example 1.1 (A solvable DAE). The DAE

x′1− x1 = 0,
x′2 + x3 = 0,

x2 = 0,

is given by the matrices

E =

⎡
⎣

1 0 0
0 1 0
0 0 0

⎤
⎦ and F =

⎡
⎣
−1 0 0
0 0 1
0 1 0

⎤
⎦ ,

yielding

p(λ ) = det(λE +F) = det

⎡
⎣
λ −1 0 0

0 λ 1
0 1 0

⎤
⎦= 1−λ .

The value λ∗ = 1 is a generalized eigenvalue and the vector z∗ = (100)T is a gen-
eralized eigenvector. Obviously, x∗(t) = eλ∗t z∗ = (et 00)T is a nontrivial solution of
the differential-algebraic equation. ��

If E is nonsingular, the homogeneous equation (1.2) represents an implicit regu-
lar ODE and its fundamental solution system forms an m-dimensional subspace in
C1(I,Rm). What happens if E is singular? Is there a class of equations, such that
equation (1.2) has a finite-dimensional solution space? The answer is closely related
to the notion of regularity.

Definition 1.2. Given any ordered pair {E,F} of matrices E,F ∈ L(Rm), the matrix
pencil λE +F is said to be regular if the polynomial p(λ ) := det(λE +F) does not
vanish identically. Otherwise the matrix pencil is said to be singular.
Both the ordered pair {E,F} and the DAE (1.1) are said to be regular if the accom-
panying matrix pencil is regular, and otherwise nonregular.
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A pair {E,F} with a nonsingular matrix E is always regular, and its polynomial
p(λ ) is of degree m. In the case of a singular matrix E, the polynomial degree is
lower as demonstrated in Example 1.1.

Proposition 1.3. For any regular pair {E,F}, E,F ∈ L(Rm), there exist nonsingular
matrices L,K ∈ L(Rm) and integers 0≤ l ≤ m, 0≤ μ ≤ l, such that

LEK =

[
I

N

]
}m− l
}l , LFK =

[
W

I

]
}m− l
}l . (1.3)

Thereby, N is absent if l = 0, and otherwise N is nilpotent of order μ , i.e., Nμ = 0,
Nμ−1 �= 0. The integers l and μ as well as the eigenstructure of the blocks N and W
are uniquely determined by the pair {E,F}.

Proof. If E is nonsingular, we simply put l = 0, L = E−1, K = I and the assertion is
true.
Assume E to be singular. Since {E,F} is a regular pair, there is a number c∈R such
that cE +F is nonsingular. Form Ẽ := (cE +F)−1E, F̃ := (cE +F)−1F = I− cẼ,
μ = ind Ẽ, r = rank Ẽμ , S = [s1 . . .sm] with s1, . . . ,sr and sr+1, . . . ,sm being bases of
im Ẽμ and ker Ẽμ , respectively. Lemma A.11 provides the special structure of the
product S−1ẼS, namely,

S−1ẼS =

[
M̃ 0
0 Ñ

]
,

with a nonsingular r× r block M̃ and a nilpotent (m− r)× (m− r) block Ñ. Ñ has
nilpotency index μ . Compute

S−1F̃S = I− cS−1ẼS =

[
I− cM̃ 0

0 I− cÑ

]
.

The block I− cÑ is nonsingular due to the nilpotency of Ñ. Denote

L :=
[

M̃−1 0
0 (I− cÑ)−1

]
S−1(cE +F)−1,

K := S, N := (I− cÑ)−1Ñ, W := M̃−1− cI,

so that we arrive at the representation

LEK =

[
I 0
0 N

]
, LFK =

[
W 0
0 I

]
.

Since Ñ and (I− cÑ)−1 commute, one has

Nl = ((I− cÑ)−1Ñ)l = ((I− cÑ)−1)l Ñl ,

and N inherits the nilpotency of Ñ. Thus, Nμ = 0 and Nμ−1 �= 0. Put l := m− r. It
remains to verify that the integers l and μ as well as the eigenstructure of N and
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W are independent of the transformations L and K. Assume that there is a further
collection l̃, μ̃ , L̃, K̃, r̃ = m− l̃ such that

L̃EK̃ =

[
Ir̃ 0
0 Ñ

]
, L̃FK̃ =

[
W̃ 0
0 Il̃

]
.

Considering the degree of the polynomial

p(λ ) = det(λE +F) = det(L−1)det(λ Ir +W )det(K−1)

= det(L̃−1)det(λ Ir̃ +W̃ )det(K̃−1)

we realize that the values r and r̃ must coincide, hence l = l̃. Introducing U := L̃L−1

and V := K̃−1K one has

U
[

I 0
0 N

]
= L̃EK =

[
I 0
0 Ñ

]
V, U

[
W 0
0 I

]
= L̃FK =

[
W̃ 0
0 I

]
V,

and, in detail,
[
U11 U12N
U21 U22N

]
=

[
V11 V12

ÑV21 ÑV22

]
,

[
U11W U12
U21W U22

]
=

[
W̃V11 W̃V12
V21 V22

]
.

Comparing the entries of these matrices we find the relations U12N =V12 and U12 =
W̃V12, which lead to U12 = W̃U12N = · · ·= W̃ μU12Nμ = 0. Analogously we derive
U21 = 0. Then, the blocks U11 =V11, U22 =V22 must be nonsingular. It follows that

V11W = W̃V11, V22N = ÑV22

holds true, that is, the matrices N and Ñ as well as W and W̃ are similar, and in
particular, μ = μ̃ is valid. ��

The real valued matrix N has the eigenvalue zero only, and can be transformed into
its Jordan form by means of a real valued similarity transformation. Therefore, in
Proposition 1.3, the transformation matrices L and K can be chosen such that N is
in Jordan form.

Proposition 1.3 also holds true for complex valued matrices. This is a well-known
result of Weierstraß and Kronecker, cf. [82]. The special pair given by (1.3) is said
to be Weierstraß–Kronecker form of the original pair {E,F}.

Definition 1.4. The Kronecker index of a regular matrix pair {E,F}, E,F ∈ L(Rm),
and the Kronecker index of a regular DAE (1.1) are defined to be the nilpotency
order μ in the Weierstraß–Kronecker form (1.3). We write ind{E,F}= μ .

The Weierstraß–Kronecker form of a regular pair {E,F} provides a broad insight
into the structure of the associated DAE (1.1). Scaling of (1.1) by L and transforming

x = K
[

y
z

]
leads to the equivalent decoupled system
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y′(t)+Wy(t) = p(t), t ∈ I, (1.4)
Nz′(t)+ z(t) = r(t), t ∈ I, (1.5)

with Lq =:
[

p
r

]
. The first equation (1.4) represents a standard explicit ODE. The

second one appears for l > 0, and it has the only solution

z(t) =
μ−1

∑
j=0

(−1) jN jr( j)(t), (1.6)

provided that r is smooth enough. The latter one becomes clear after recursive use
of (1.5) since

z = r−Nz′ = r−N(r−Nz′)′ = r−Nr′+N2z′′ = r−Nr′+N2(r−Nz′)′′ = · · ·

Expression (1.6) shows the dependence of the solution x on the derivatives of the
source or perturbation term q. The higher the index μ , the more differentiations
are involved. Only in the index-1 case do we have N = 0, hence z(t) = r(t), and
no derivatives are involved. Since numerical differentiations in these circumstances
may cause considerable trouble, it is very important to know the index μ as well as
details of the structure responsible for a higher index when modeling and simulating
with DAEs in practice. The typical solution behavior of ill-posed problems can be
observed in higher index DAEs: small perturbations of the right-hand side yield
large changes in the solution. We demonstrate this by the next example.

Example 1.5 (Ill-posed behavior in case of a higher index DAE). The regular DAE
⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
E

x′(t)+

⎡
⎢⎢⎢⎢⎣

−α −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
F

x(t) =

⎡
⎢⎢⎢⎢⎣

0
0
0
0

γ(t)

⎤
⎥⎥⎥⎥⎦
,

completed by the initial condition
[
1 0 0 0 0

]
x(0) = 0, is uniquely solvable for each

sufficiently smooth function γ . The identically zero solution corresponds to the van-
ishing input function γ(t) = 0. The solution corresponding to the small excitation
γ(t) = ε 1

n sinnt, n ∈ N, ε small, is

x1(t) = ε
∫ t

0
n2eα(t−s) cosns ds, x2(t) = εn2 cosnt,

x3(t) =−εnsinnt, x4(t) =−ε cosnt, x5(t) = ε
1
n

sinnt.

While the excitation tends to zero for n → ∞, the first three solution components
grow unboundedly. The solution value at t = 0,
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x1(0) = 0, x2(0) = εn2, x3(0) = 0, x4(0) =−ε , x5(0) = 0,

moves away from the origin with increasing n, and the origin is no longer a consis-
tent value at t = 0 for the perturbed system, as it is the case for the unperturbed one.
Figures 1.1 and 1.2 show γ and the response x2 for ε = 0.1, n = 1 and n = 100. ��

Fig. 1.1 γ and x2 for n = 1

Fig. 1.2 γ and x2 for n = 100

This last little constant coefficient example is relatively harmless. Time-dependent
subspaces and nonlinear relations in more general DAEs may considerably amplify
the bad behavior. For this reason one should be careful in view of numerical sim-
ulations. It may well happen that an integration code seemingly works, however it
generates wrong results.

The general solution of a regular homogeneous DAE (1.2) is of the form

x(t) = K
[

e−tW

0

]
y0, y0 ∈ R

m−l

which shows that the solution space has finite dimension m− l and the solution
depends smoothly on the initial value y0 ∈ R

m−l . Altogether, already for constant
coefficient linear DAEs, the solutions feature an ambivalent behavior: they depend
smoothly on certain initial values while they are ill-posed with respect to excitations.

The next theorem substantiates the above regularity notion.
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Theorem 1.6. The homogeneous DAE (1.2) has a finite-dimensional solution space
if and only if the pair {E,F} is regular.

Proof. As we have seen before, if the pair {E,F} is regular, then the solutions of
(1.2) form an (m− l)-dimensional space. Conversely, let {E,F} be a singular pair,
i.e., det(λE +F)≡ 0. For any set of m+1 different real values λ1, . . . ,λm+1 we find
nontrivial vectors η1, . . . ,ηm+1 ∈ R

m such that (λiE +F)ηi = 0, i = 1, . . . ,m+ 1,
and a nontrivial linear combination ∑m+1

i=1 αiηi = 0.
The function x(t) = ∑m+1

i=1 αieλitηi does not vanish identically, and it satisfies the
DAE (1.2) as well as the initial condition x(0) = 0. For disjoint (m+1)-element sets
{η1, . . . ,ηm+1}, one always has different solutions, and, consequently, the solution
space of a homogeneous initial value problem (IVP) of (1.2) is not finite. ��

Example 1.7 (Solutions of a nonregular DAE (cf. [97])). The pair {E,F},

E =

⎡
⎢⎢⎣

1 1 0 0
0 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , m = 4,

is singular. In detail, the homogeneous DAE (1.2) reads

(x1 + x2)
′ + x2 = 0,

x′4 = 0,
x3 = 0,

x′3 = 0.

What does the solution space look like? Obviously, the component x3 van-
ishes identically and x4 is an arbitrary constant function. The remaining equation
(x1 + x2)

′+ x2 = 0 is satisfied by any arbitrary continuous x2, and the resulting ex-
pression for x1 is

x1(t) = c− x2(t)−
∫ t

0
x2(s)ds,

c being a further arbitrary constant. Clearly, this solution space does not have fi-
nite dimension, which confirms the assertion of Theorem 1.6. Indeed, the regularity
assumption is violated since

p(λ ) = det(λE +F) = det

⎡
⎢⎢⎣
λ λ +1 0 0
0 0 0 λ
0 0 1 0
0 0 λ 0

⎤
⎥⎥⎦= 0.

Notice that, in the case of nontrivial perturbations q, for the associated perturbed
DAE (1.1) the consistency condition q′3 = q4 must be valid for solvability. In prac-
tice, such unbalanced models should be avoided. However, in large dimensions m,
this might not be a trivial task. ��
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We take a closer look at the subsystem (1.5) within the Weierstraß–Kronecker
form, which is specified by the nilpotent matrix N. We may choose the transforma-
tion matrices L and K in such a way that N has Jordan form, say

N = diag [J1, . . . ,Js], (1.7)

with s nilpotent Jordan blocks

Ji =

⎡
⎢⎢⎢⎢⎣

0 1
. . . . . .

. . . 1
0

⎤
⎥⎥⎥⎥⎦
∈ L(Rki), i = 1, . . . ,s,

where k1 + · · ·+ ks = l, μ = max{ki : i = 1, . . . ,s}. The Kronecker index μ equals
the order of the maximal Jordan block in N.

The Jordan form (1.7) of N indicates the further decoupling of the subsystem
(1.5) in accordance with the Jordan structure into s lower-dimensional equations

Jiζ ′i (t)+ζi(t) = ri(t), i = 1, . . . ,s.

We observe that ζi,2, . . . ,ζi,ki are components involved with derivatives whereas the
derivative of the first component ζi,1 is not involved. Notice that the value of ζi,1(t)
depends on the (ki−1)-th derivative of ri,ki(t) for all i = 1, . . . ,s since

ζi,1(t) = ri,1(t)−ζ ′i,2(t) = ri,1(t)− r′i,2(t)+ζ ′i,3(t) = · · ·=
ki

∑
j=1

(−1) j−1r( j−1)
i, j (t).

1.2 Projector based decoupling of regular DAEs

1.2.1 Admissible matrix sequences and admissible projectors

Our aim is now a suitable rearrangement of terms within the equation

Ex′(t)+Fx(t) = q(t), (1.8)

which allows for a similar insight into the structure of the DAE to that given by the
Weierstraß–Kronecker form. However, we do not use transformations, but we work
in terms of the original equation setting and apply a projector based decoupling
concept. The construction is simple. We consider the DAE (1.8) with the coefficients
E,F ∈ L(Rm).

Put G0 := E, B0 := F, N0 := kerG0 and introduce Q0 ∈ L(Rm) as a projector
onto N0. Let P0 := I −Q0 be the complementary one. Using the basic projector
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properties Q2
0 = Q0, Q0P0 = P0Q0 = 0, P0 +Q0 = I, G0Q0 = 0 and G0 = G0P0 (see

Appendix A), we rewrite the DAE (1.8) consecutively as

G0x′+B0x = q

⇐⇒ G0P0x′+B0(Q0 +P0)x = q

⇐⇒ (G0 +B0Q0︸ ︷︷ ︸
=:G1

)(P0x′+Q0x)+B0P0︸︷︷︸
=:B1

x = q

⇐⇒ G1(P0x′+Q0x)+B1x = q.

Next, let Q1 be a projector onto N1 := kerG1, and let P1 := I−Q1 the complementary
one. We rearrange the last equation to

G1P1(P0x′+Q0x)+B1(Q1 +P1)x = q

⇐⇒ (G1 +B1Q1)︸ ︷︷ ︸
G2

(
P1(P0x′+Q0x)+Q1x

)
+B1P1︸︷︷︸

B2

x = q (1.9)

and so on. The goal is a matrix with maximal possible rank in front of the term
containing the derivative x′.

We form, for i≥ 0,

Gi+1 := Gi +BiQi, Ni+1 := kerGi+1, Bi+1 := BiPi (1.10)

and introduce Qi+1 ∈ L(Rm) as a projector onto Ni+1 with Pi+1 := I−Qi+1. Denote
ri := rankGi and introduce the product of projectors Πi := P0 · · ·Pi. These ranks and
products of projectors will play a special role later on. From Bi+1 = BiPi = B0Πi we
derive the inclusion kerΠi ⊆ kerBi+1 as an inherent property of our construction.
Since Gi = Gi+1Pi, the further inclusions

imG0 ⊆ imG1 ⊆ ·· · ⊆ imGi ⊆ imGi+1,

follow, and hence
r0 ≤ r1 ≤ ·· · ≤ ri ≤ ri+1.

An additional inherent property of the sequence (1.10) is given by

Ni−1∩Ni ⊆ Ni∩Ni+1, i≥ 1. (1.11)

Namely, if Gi−1z = 0 and Giz = 0 are valid for a vector z ∈ R
m, which corresponds

to Pi−1z = 0 and Piz = 0, i.e., z = Qiz, then we can conclude that

Gi+1z = Giz+BiQiz = Biz = Bi−1Pi−1z = 0.

From (1.11) we learn that a nontrivial intersection Ni∗−1 ∩Ni∗ never allows an in-
jective matrix Gi, i > i∗. As we will realize later (see Proposition 1.34), such a
nontrivial intersection immediately indicates a singular matrix pencil λE +F .
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Again, we are aiming at a matrix Gκ the rank of which is as high as possible.
However, how can we know whether the maximal rank has been reached? Appropri-
ate criteria would be helpful. As we will see later on, for regular DAEs, the sequence
terminates with a nonsingular matrix.

Example 1.8 (Sequence for a regular DAE). For the DAE

x′1 + x1 + x2 + x3 = q1,

x′3 + x2 = q2,

x1 + x3 = q3,

the first matrices of our sequence are

G0 = E =

⎡
⎣

1 0 0
0 0 1
0 0 0

⎤
⎦ , B0 = F =

⎡
⎣

1 1 1
0 1 0
1 0 1

⎤
⎦ .

As a nullspace projector onto kerG0 we choose

Q0 =

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ and obtain G1 = G0 +B0Q0 =

⎡
⎣

1 1 0
0 1 1
0 0 0

⎤
⎦ , B1 = B0P0 =

⎡
⎣

1 0 1
0 0 0
1 0 1

⎤
⎦ .

Since G1 is singular, we turn to the next level. We choose as a projector onto kerG1

Q1 =

⎡
⎣

1 0 0
−1 0 0
1 0 0

⎤
⎦ and arrive at G2 = G1 +B1Q1 =

⎡
⎣

3 1 0
0 1 1
2 0 0

⎤
⎦ .

The matrix G2 is nonsingular, hence the maximal rank is reached and we stop con-
structing the sequence. Looking at the polynomial p(λ ) = det(λE +F) = 2λ we
know this DAE to be regular. Later on we shall see that a nonsingular matrix G2 is
typical for regularity with Kronecker index 2. Observe further that the nullspaces N0
and N1 intersect trivially, and that the projector Q1 is chosen such that Π0Q1Q0 = 0
is valid, or equivalently, N0 ⊆ kerΠ0Q1. ��

Example 1.9 (Sequence for a nonregular DAE). We consider the nonregular matrix
pair from Example 1.7, that is

G0 = E =

⎡
⎢⎢⎣

1 1 0 0
0 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ , B0 = F =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ .

Choosing
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Q0 =

⎡
⎢⎢⎣

1 0 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ yields G1 =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ , B1 =

⎡
⎢⎢⎣

1 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ .

The matrix G1 is singular. We turn to the next level. We pick

Q1 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ which implies G2 = G0.

We continue constructing

Q2 j = Q0, G2 j+1 = G1, Q2 j+1 = Q1, G2 j+2 = G0, j ≥ 1.

Here we have ri = 3 for all i≥ 0. The maximal rank is already met by G0, but there
is no criterion which indicates this in time. Furthermore, Ni∩Ni+1 = {0} holds true
for all i ≥ 0, such that there is no step indicating a singular pencil via property
(1.11). Observe that the product Π0Q1Q0 = P0Q1Q0 does not vanish as it does in
the previous example. ��

The rather irritating experience with Example 1.9 leads us to the idea to refine
the choice of the projectors by incorporating more information from the previous
steps. So far, just the image spaces of the projectors Qi are prescribed. We refine the
construction by prescribing certain appropriate parts of their nullspaces, too. More
precisely, we put parts of the previous nullspaces into the current one.

When constructing the sequence (1.10), we now proceed as follows. At any level
we decompose

N0 + · · ·+Ni−1 =
�
Ni⊕Xi,

�
Ni := (N0 + · · ·+Ni−1)∩Ni, (1.12)

where Xi is any complement to
�
Ni in N0 + · · ·+Ni−1. We choose Qi in such a way

that the condition
Xi ⊆ kerQi (1.13)

is met. This is always possible since the subspaces
�
Ni and Xi intersect trivially (see

Appendix, Lemma A.7). This restricts to some extent the choice of the projectors.
However, a great variety of possible projectors is left. The choice (1.13) implies the
projector products Πi to be projectors again, cf. Proposition 1.13(2). Our structural
analysis will significantly benefit from this property. We refer to Chapter 7 for a
discussion of practical calculations.

If the intersection
�
Ni = (N0 + · · ·+Ni−1)∩Ni is trivial, then we have

Xi = N0 + · · ·+Ni−1 ⊆ kerQi.
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This is the case in Example 1.8 which shows a regular DAE.

Definition 1.10. For a given matrix pair {E,F}, E,F ∈ L(Rm), and an integer κ ∈N,
we call the matrix sequence G0, . . . ,Gκ an admissible matrix sequence, if it is built
by the rule

Set G0 := E, B0 := F, N0 := kerG0, and choose a projector Q0 ∈ L(Rm) onto N0.
For i≥ 1:

Gi := Gi−1 +Bi−1Qi−1,

Bi := Bi−1Pi−1

Ni := kerGi,
�
Ni := (N0 + · · ·+Ni−1)∩Ni,

fix a complement Xi such that N0 + · · ·+Ni−1 =
�
Ni⊕Xi,

choose a projector Qi such that imQi = Ni and Xi ⊆ kerQi,

set Pi := I−Qi, Πi :=Πi−1Pi

The projectors Q0, . . . ,Qκ in an admissible matrix sequence are said to be admissi-
ble. The matrix sequence G0, . . . ,Gκ is said to be regular admissible, if additionally,

�
Ni = {0}, ∀ i = 1, . . . ,κ .

Then, also the projectors Q0, . . . ,Qκ are called regular admissible.

Admissible projectors are always cross-linked to the matrix function sequence.
Changing a projector at a certain level the whole subsequent sequence changes

accordingly. Later on we learn that nontrivial intersections
�
Ni indicate a singular

matrix pencil.
The projectors in Example 1.8 are admissible but the projectors in Example 1.9

are not. We revisit Example 1.9 and provide admissible projectors.

Example 1.11 (Admissible projectors). Consider once again the singular pair from
Examples 1.7 and 1.9. We start the sequence with the same matrices G0,B0,Q0,G1
as described in Example 1.9 but now we use an admissible projector Q1. The
nullspaces of G0 and G1 are given by

N0 = span

⎡
⎢⎢⎣

1
−1
0
0

⎤
⎥⎥⎦ and N1 = span

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ .

This allows us to choose

Q1 =

⎡
⎢⎢⎣

1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,
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which satisfies the condition X1 ⊆ kerQ1, where X1 = N0 and
�
N1 = N0∩N1 = {0}.

It yields

G2 =

⎡
⎢⎢⎣

1 2 0 0
0 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ .

Now we find N2 = span
[
−2 1 0 0

]T and with

N0 +N1 = N0⊕N1 = span

(
⎡
⎢⎢⎣

1
−1
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦
)

= span

(
⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦
)
,

we have N2⊆N0+N1, N0+N1+N2 =N0+N1 as well as
�
N2 = (N0+N1)∩N2 =N2.

A possible complement X2 to
�
N2 in N0 +N1 and an appropriate projector Q2 are

X2 = span

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , Q2 =

⎡
⎢⎢⎣

0 −2 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

This leads to G3 = G2, and the nontrivial intersection N2∩N3 indicates (cf. (1.11))
that also all further matrices Gi are singular. Proposition 1.34 below says that this
indicates at the same time a singular matrix pencil. In the next steps, for i ≥ 3, it
follows that Ni = N2 and Gi = G2.

For admissible projectors Qi, not only is their image imQi = Ni fixed, but also a
part of kerQi. However, there remains a great variety of possible projectors, since,
except for the regular case, the subspaces Xi are not uniquely determined and further
represent just a part of kerQi. Of course, we could restrict the variety of projectors by
prescribing special subspaces. For instance, we may exploit orthogonality as much
as possible, which is favorable with respect to computational aspects.

Definition 1.12. The admissible projectors Q0, . . . ,Qκ are called widely orthogonal
if Q0 = Q∗0, and

Xi =
�
Ni
⊥ ∩ (N0 + · · ·+Ni−1), (1.14)

as well as
kerQi = [N0 + · · ·+Ni]

⊥⊕Xi, i = 1, . . . ,κ , (1.15)

hold true.

The widely orthogonal projectors are completely fixed and they have their advan-
tages. However, in Subsection 2.2.3 we will see that it makes sense to work with
sufficiently flexible admissible projectors.
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The next assertions collect useful properties of admissible matrix sequences
G0, . . . ,Gκ and the associated admissible projectors Q0, . . . ,Qκ for a given pair
{E,F}. In particular, the special role of the products Πi = P0 · · ·Pi is revealed. We
emphasize this by using mainly the short notation Πi.

Proposition 1.13. Let Q0, . . . ,Qκ be admissible projectors for the pair {E,F},
E,F ∈ L(Rm). Then the following assertions hold true for i = 1, . . . ,κ:

(1) kerΠi = N0 + · · ·+Ni.
(2) The products Πi = P0 · · ·Pi and Πi−1Qi = P0 · · ·Pi−1Qi, are again projectors.
(3) N0 + · · ·+Ni−1 ⊆ kerΠi−1Qi.
(4) Bi = BiΠi−1.

(5)
�
Ni ⊆ Ni∩kerBi = Ni∩Ni+1 ⊆

�
Ni+1.

(6) If Q0, . . . ,Qκ are widely orthogonal, then imΠi = [N0 + · · ·+Ni]
⊥, Πi = Π ∗i

and Πi−1Qi = (Πi−1Qi)
∗.

(7) If Q0, . . . ,Qκ are regular admissible, then kerΠi−1Qi = kerQi and QiQ j = 0
for j = 0, . . . , i−1.

Proof. (1) (⇒) To show kerΠi ⊆ N0 + · · ·+Ni for i = 1, . . . ,κ , we consider an
element z ∈ kerΠi. Then,

0 =Πiz = P0 · · ·Piz =
i

∏
k=0

(I−Qk)z.

Expanding the right-hand expression, we obtain

z =
i

∑
k=0

QkHkz ∈ N0 + · · ·+Ni

with suitable matrices Hk.
(⇐) The other direction will be proven by induction. Starting the induc-
tion with i = 0, we observe that kerΠ0 = kerP0 = N0. We suppose that
kerΠi−1 = N0 + · · ·+Ni−1 is valid. Because of

N0 + · · ·+Ni = Xi +
�
Ni +Ni

each z ∈ N0 + · · ·+Ni can be written as z = xi + z̄i + zi with

xi ∈ Xi ⊆ N0 + · · ·+Ni−1 = kerΠi−1, z̄i ∈
�
Ni ⊆ Ni, zi ∈ Ni.

Since Qi is admissible, we have Xi ⊆ kerQi and Ni = imQi. Consequently,

Πiz =Πi−1(I−Qi)z =Πi−1(I−Qi)xi =Πi−1xi = 0

which implies N0 + · · ·+Ni ⊆ kerΠi to be true.
(2) From (1) we know that imQ j = Nj ⊆ kerΠi for j ≤ i. It follows that
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ΠiPj =Πi(I−Q j) =Πi.

Consequently, Π 2
i =Πi and ΠiΠi−1 =Πi imply

(Πi−1Qi)
2 =Πi−1(I−Pi)Πi−1Qi =Πi−1Qi−ΠiΠi−1Qi

=Πi−1Qi−ΠiQi =Πi−1Qi.

(3) For any z ∈ N0 + · · ·+Ni−1, we know from (1) that Πi−1z = 0 and Πiz = 0.
Thus

Πi−1Qiz =Πi−1z−Πiz = 0.

(4) By construction of Bi (see (1.10)), we find Bi = B0Πi−1. Using (2), we get that

Bi = B0Πi−1 = B0Πi−1Πi−1 = BiΠi−1.

(5) First, we show that
�
Ni ⊆ Ni ∩ kerBi. For z ∈

�
Ni = (N0 + · · ·+Ni−1)∩Ni we

find Πi−1z = 0 from (1) and, hence, Biz = B0Πi−1z = 0 using (4). Next,

Ni∩kerBi = Ni∩Ni+1

since Gi+1z = (Gi +BiQi)z = Biz for any z ∈ Ni = imQi = kerGi. Finally,

�
Ni+1 = (N0 + · · ·+Ni)∩Ni+1 implies immediately that Ni∩Ni+1 ⊆

�
Ni+1.

(6) We use induction to show that imΠi = [N0 + · · ·+Ni]
⊥. Starting with i = 0,

we know that imΠ0 = N⊥0 since Q0 = Q∗0.
Since Xi ⊆ N0 + · · ·+Ni−1 (see (1.14)) we derive from (1) that Πi−1Xi = 0.
Regarding (1.15), we find

imΠi =Πi−1imPi =Πi−1([N0 + · · ·+Ni]
⊥+Xi) =Πi−1([N0 + · · ·+Ni]

⊥).

Using [N0 + · · ·+Ni]
⊥ ⊆ [N0 + · · ·+Ni−1]

⊥ = imΠi−1 we conclude

imΠi =Πi−1([N0 + · · ·+Ni])
⊥ = [N0 + · · ·+Ni]

⊥.

In consequence, Πi is the orthoprojector onto [N0+ · · ·+Ni]
⊥ along N0+ · · ·+

Ni, i.e., Πi =Π ∗i . It follows that

Πi−1Qi =Πi−1−Πi =Π ∗i−1−Π ∗i = (Πi−1−Πi)
∗ = (Πi−1Qi)

∗.

(7) Let
�
Ni = 0 be valid. Then, Xi = N0 + · · ·+Ni−1 = N0⊕·· ·⊕Ni−1 and, there-

fore,

kerΠi−1
(1)
= N0⊕·· ·⊕Ni−1 = Xi ⊆ kerQi.

This implies QiQ j = 0 for j = 0, . . . , i−1. Furthermore, for any z∈ kerΠi−1Qi,
we have Qiz ∈ kerΠi−1 ⊆ kerQi, which means that z ∈ kerQi.

��
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Remark 1.14. If the projectors Q0, . . . ,Qκ are regular admissible, and the Π0, . . . ,Πκ
are symmetric, then Q0, . . . ,Qκ are widely orthogonal. This is a consequence of the
properties

imΠi = (kerΠi)
⊥ = (N0⊕·· ·⊕Ni)

⊥, kerQi = imΠi⊕Xi for i = 1, . . . ,κ .

In more general cases, if there are nontrivial intersections
�
Ni, widely orthogonal pro-

jectors are given, if the Πi are symmetric and, additionally, the conditions QiΠi = 0,
Pi(I−Πi−1) = (Pi(I−Πi−1))

∗ are valid (cf. Chapter 7).

Now we are in a position to provide a result which plays a central role in the projec-
tor approach of regular DAEs.

Theorem 1.15. If, for the matrix pair {E,F}, E,F ∈ L(Rm), an admissible matrix
sequence (Gi)i≥0 contains an integer μ such that Gμ is nonsingular, then the repre-
sentations

G−1
μ E =Πμ−1 +(I−Πμ−1)G−1

μ E(I−Πμ−1) (1.16)

G−1
μ F = Q0 + · · ·+Qμ−1 +(I−Πμ−1)G−1

μ FΠμ−1 +Πμ−1G−1
μ FΠμ−1 (1.17)

are valid and {E,F} is a regular pair.

Proof. Let Gμ be nonsingular. Owing to Proposition 1.13 we express

F(I−Πμ−1) = F(Q0 +Π0Q1 + · · ·+Πμ−2Qμ−1)

= B0Q0 +B1Q1 + · · ·+Bμ−1Qμ−1

= GμQ0 +GμQ1 + · · ·+GμQμ−1

= Gμ(Q0 +Q1 + · · ·+Qμ−1),

therefore
Πμ−1G−1

μ F(I−Πμ−1) = 0. (1.18)

Additionally, we have Gμ = E +F(I−Πμ−1), thus I = G−1
μ E +G−1

μ F(I−Πμ−1)

and Πμ−1 =Πμ−1G−1
μ E = G−1

μ EΠμ−1. From these properties it follows that

Πμ−1G−1
μ E(I−Πμ−1) = 0, (1.19)

which proves the expressions (1.16), (1.17).
Denote the finite set consisting of all eigenvalues of the matrix −Πμ−1G−1

μ F by
Λ . We show the matrix λE +F to be nonsingular for each arbitrary λ not belonging
to Λ , which proves the matrix pencil to be regular. The equation (λE +F)z = 0 is
equivalent to

λG−1
μ Ez+G−1

μ Fz = 0 ⇐⇒
λG−1

μ EΠμ−1z+λG−1
μ E(I−Πμ−1)z+G−1

μ FΠμ−1z+G−1
μ F(I−Πμ−1)z = 0

(1.20)
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Multiplying (1.20) by Πμ−1 and regarding (1.18)–(1.19), yields

λΠμ−1z+Πμ−1G−1
μ FΠμ−1z = (λ I +Πμ−1G−1

μ F)Πμ−1z = 0,

which implies Πμ−1z = 0 for λ /∈ Λ . Using Πμ−1z = 0, equation (1.20) multiplied
by I−Πμ−1 reduces to

λ (I−Πμ−1)G−1
μ E(I−Πμ−1)z+(I−Πμ−1)G−1

μ F(I−Πμ−1)z = 0.

Replacing G−1
μ E = I−G−1

μ F(I−Πμ−1) we find

λ (I−Πμ−1)z+(1−λ )(I−Πμ−1)G−1
μ F(I−Πμ−1)(I−Πμ−1)z = 0.

If λ = 1 then this immediately implies z = 0. If λ �= 1 it holds that
(

λ
1−λ

I +(I−Πμ−1)G−1
μ F(I−Πμ−1)︸ ︷︷ ︸

Q0+···+Qμ−1

)
(I−Πμ−1)z︸ ︷︷ ︸

z

= 0.

Multiplication by Qμ−1 gives Qμ−1z = 0. Then multiplication by Qμ−2 yields
Qμ−2z = 0, and so on. Finally we obtain Q0z = 0 and hence z = (I−Πμ−1)z =
Q0z+ · · ·+Πμ−2Qμ−1z = 0. ��

Once more we emphasize that the matrix sequence depends on the choice of the
admissible projectors. However, the properties that are important later on are inde-
pendent of the choice of the projectors, as the following theorem shows.

Theorem 1.16. For any pair {E,F}, E,F ∈ L(Rm), the subspaces N0 + · · ·+Ni,
�
Ni

and imGi are independent of the special choice of the involved admissible projec-
tors.

Proof. All claimed properties are direct and obvious consequences of Lemma 1.18
below. ��

Theorem 1.16 justifies the next definition.

Definition 1.17. For each arbitrary matrix pair {E,F}, E,F ∈ L(Rm), the integers

ri := rankGi, i ≥ 0, ui := dim
�
Ni i ≥ 1, which arise from an admissible matrix se-

quence (Gi)i≥0, are called structural characteristic values.

Lemma 1.18. Let Q0, . . . ,Qκ and Q̄0, . . . , Q̄κ be any two admissible projector se-
quences for the pair {E,F}, E,F ∈ L(Rm), and Nj, N̄ j, G j, Ḡ j, etc. the correspond-
ing subspaces and matrices. Then it holds that:

(1) N̄0 + · · ·+ N̄ j = N0 + · · ·+Nj, for j = 0, . . . ,κ .

(2) Ḡ j = G jZ j, B̄ j = B j +G j
j−1
∑

l=0
QlA jl , for j = 0, . . . ,κ ,

with nonsingular matrices Z0, . . . ,Zκ+1 given by Z0 := I, Z j+1 := Yj+1Z j,
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Y1 := I +Q0(Q̄0−Q0) = I +Q0Q̄0P0,

Yj+1 := I +Q j(Π̄ j−1Q̄ j−Π j−1Q j)+
j−1

∑
l=0

QlA jl Q̄ j,

where A jl = Π̄ j−1 for l = 0, . . . , j−1.
(3) Ḡκ+1 = Gκ+1Zκ+1 and N̄0 + · · ·+ N̄κ+1 = N0 + · · ·+Nκ+1.
(4) (N̄0 + · · ·+ N̄ j−1)∩ N̄ j = (N0 + · · ·+Nj−1)∩Nj for j = 1, . . . ,κ+1.

Remark 1.19. The introduction of Ail seems to be unnecessary at this point. We
use these extra terms to emphasize the great analogy to the case of DAEs with
time-dependent coefficients (see Lemma 2.12). The only difference between both
cases is given in the much more elaborate representation of Ail for time-dependent
coefficients.

Proof. We prove (1) and (2) together by induction. For i = 0 we have

Ḡ0 = E = G0, B̄0 = F = B0, N̄0 = ker Ḡ0 = kerG0 = N0, Z0 = I.

To apply induction we suppose the relations

N̄0 + · · ·+ N̄ j = N0 + · · ·+Nj, (1.21)

Ḡ j = G jZ j, B̄ j = B j +G j

j−1

∑
l=0

QlA jl (1.22)

to be valid for j ≤ i with nonsingular Z j as described above, and

Z−1
j = I +

j−1

∑
l=0

QlC jl

with certain C jl . Comparing Ḡi+1 and Gi+1 we write

Ḡi+1 = Ḡi + B̄iQ̄i = GiZi + B̄iQ̄iZi + B̄iQ̄i(I−Zi) (1.23)

and consider the last term in more detail. We have, due to the form of Yl , induction
assumption (1.21) and im(Yj− I) ⊆ N0 + · · ·+Nj−1 = kerΠ j−1 given for all j ≥ 0
(see Proposition 1.13) that

N0 + · · ·+Nj−1 ⊆ kerΠ j−1Q j, N̄0 + · · ·+ N̄ j−1 ⊆ kerΠ̄ j−1Q̄ j, j ≤ i, (1.24)

and therefore,
Yj+1− I = (Yj+1− I)Π j−1, j = 1, . . . , i. (1.25)

This implies
im(Yj− I)⊆ ker(Yj+1− I), j = 1, . . . , i. (1.26)

Concerning Z j = YjZ j−1 and using (1.26), a simple induction proof shows
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Z j− I =
j

∑
l=1

(Yl− I), j = 1, . . . , i,

to be satisfied. Consequently,

im(I−Zi)⊆ N0 + · · ·+Ni−1 = N̄0 + · · ·+ N̄i−1 ⊆ ker Q̄i.

Using (1.23), we get
Ḡi+1 = GiZi + B̄iQ̄iZi,

which leads to

Ḡi+1Z−1
i = Gi + B̄iQ̄i = Gi +BiQi +(B̄iQ̄i−BiQi).

We apply the induction assumption (1.22) to find

Ḡi+1Z−1
i = Gi+1 +Bi(Q̄i−Qi)+Gi

i−1

∑
l=0

QlAil Q̄i.

Induction assumption (1.21) and Proposition 1.13 imply kerΠ̄i−1 = kerΠi−1 and
hence

Bi = B0Πi−1 = B0Πi−1Π̄i−1 = BiΠ̄i−1.

Finally,

Ḡi+1Z−1
i = Gi+1 +Bi(Π̄i−1Q̄i−Πi−1Qi)+Gi+1

i−1

∑
l=0

QlAil Q̄i

= Gi+1 +BiQi(Π̄i−1Q̄i−Πi−1Qi)+Gi+1

i−1

∑
l=0

QlAil Q̄i = Gi+1Yi+1,

which means that
Ḡi+1 = Gi+1Yi+1Zi = Gi+1Zi+1. (1.27)

Next, we will show Zi+1 to be nonsingular. Owing to the induction assumption, we
know that Zi is nonsingular. Considering the definition of Zi+1 we have to show Yi+1
to be nonsingular. Firstly,

ΠiYi+1 =Πi (1.28)

since imQ j ⊆ kerΠi for j ≤ i. This follows immediately from the definition of Yi+1
and Proposition 1.13 (1). Using the induction assumption (1.21), Proposition 1.13
and Lemma A.3, we find

Π jΠ̄ j =Π j, Π̄ jΠ j = Π̄ j and Π jΠ j =Π j for j = 0, . . . , i.

This implies that
Πi−1(Yi+1− I) =Πi−1(Yi+1− I)Πi (1.29)

because
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Πi−1(Yi+1− I)
Prop.1.13(1)

= Πi−1Qi(Π̄i−1Q̄i−Πi−1Qi)

= (Πi−1−Πi)(Π̄i−1Q̄i−Πi−1Qi)

= Πi−1(Q̄i−Qi) = Πi−1(Pi− P̄i)

= Πi−Πi−1Π̄i−1P̄i = Πi−Πi−1Π̄i

= Πi−Πi−1Π̄iΠi = (I−Πi−1Π̄i)Πi.

Equations (1.28) and (1.29) imply

Πi−1(Yi+1− I) =Πi−1(Yi+1− I)Πi =Πi−1(Yi+1− I)ΠiYi+1

and, consequently,

I = Yi+1− (Yi+1− I)
(1.25)
= Yi+1− (Yi+1− I)Πi−1

= Yi+1− (Yi+1− I)Πi−1{(I−Πi−1)Yi+1 +Πi−1}
= Yi+1− (Yi+1− I)Πi−1{Yi+1−Πi−1(Yi+1− I)}
= Yi+1− (Yi+1− I)Πi−1{Yi+1−Πi−1(Yi+1− I)ΠiYi+1}
= (I− (Yi+1− I){I−Πi−1(Yi+1− I)Πi})Yi+1.

This means that Yi+1 is nonsingular and

Y−1
i+1 = I− (Yi+1− I){I−Πi−1(Yi+1− I)Πi}.

Then also Zi+1 = Yi+1Zi is nonsingular, and

Z−1
i+1 = Z−1

i Y−1
i+1 = (I +

i−1

∑
l=0

QlCil)Y−1
i+1 = I +

i

∑
l=0

QlCi+1 l

with certain coefficients Ci+1 l . From (1.27) we conclude N̄i+1 = Z−1
i+1Ni+1, and, due

to the special form of Z−1
i+1,

N̄i+1 ⊆ N0 + · · ·+Ni+1, N̄0 + · · ·+ N̄i+1 ⊆ N0 + · · ·+Ni+1.

Owing to the property im(Zi+1− I)⊆ N0 + · · ·+Ni = N̄0 + · · ·+ N̄i, it holds that

Ni+1 = Zi+1N̄i+1 = (I +(Zi+1− I))N̄i+1 ⊆ N̄0 + · · ·+ N̄i+1.

Thus, N0 + · · ·+Ni+1 ⊆ N̄0 + · · ·+ N̄i+1 is valid. For symmetry reasons we have

N0 + · · ·+Ni+1 = N̄0 + · · ·+ N̄i+1.

Finally, we derive from the induction assumption that
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B̄i+1 = B̄iP̄i =
(
Bi +Gi

i−1

∑
l=0

QlAil
)
P̄i

= BiPiP̄i +BiQiP̄i +Gi+1

i−1

∑
l=0

QlAil P̄i

= BiPi +BiQiΠ̄i +Gi+1

i−1

∑
l=0

QlAil P̄i = Bi+1 +Gi+1

i

∑
l=0

QlAi+1,l

with Ai+1,l = Ail P̄i, l = 0, . . . , i−1, Ai+1,l = Π̄i, and therefore, for l ≤ i−1,

Ai+1,l = Ail P̄i = Ai−1,l P̄i−1P̄i = Al+1,l P̄l+1 · · · P̄i = Π̄l P̄l+1 · · · P̄i = Π̄i.

We have proved assertions (1) and (2), and (3) is a simple consequence. Next we
prove assertion (4). By assertion (1) from Lemma 1.13, we have N0 + · · ·+Ni =
kerΠi and

Gi+1 = G0 +B0Q0 + · · ·+BiQi = G0 +B0Q0 +B1P0Q1 + · · ·+BiP0 · · ·Pi−1Qi

= G0 +B0(Q0 +P0Q1 + · · ·+P0 · · ·Pi−1Qi)

= G0 +B0(I−P0 · · ·Pi) = G0 +B0(I−Πi).

This leads to the description

�
Ni+1 = (N0 + · · ·+Ni)∩Ni+1 = {z ∈ R

m : Πiz = 0, G0z+B0(I−Πi)z = 0}
= {z ∈ R

m : z ∈ N0 + · · ·+Ni, G0z+B0z = 0}
= {z ∈ R

m : z ∈ N̄0 + · · ·+ N̄i, Ḡ0z+ B̄0z = 0}
= (N̄0 + · · ·+ N̄i)∩ N̄i+1.

��

1.2.2 Decoupling by admissible projectors

In this subsection we deal with matrix pairs {E,F}, E,F ∈ L(Rm), the admissible
matrix sequence (Gi)i≥0 of which reaches a nonsingular matrix Gμ . Those matrix
pairs as well as the associated DAEs

Ex′(t)+Fx(t) = q(t) (1.30)

are regular by Theorem 1.15. They have the structural characteristic values

r0 ≤ ·· · ≤ rμ−1 < rμ = m.

The nonsingular matrix Gμ allows for a projector based decoupling such that the de-
coupled version of the given DAE looks quite similar to the Weierstraß–Kronecker
form.
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We stress that, at the same time, our discussion should serve as a model for a
corresponding decoupling of time-dependent linear DAEs for which we do not have
a Weierstraß–Kronecker form.

When constructing an admissible matrix function sequence (Gi)i≥0 we have in
mind a rearrangement of terms within the original DAE (1.30) such that the solution
components Πμ−1x(t) and (I−Πμ−1)x(t) are separated as far as possible and the
nonsingular matrix Gμ occurs in front of the derivative (Πμ−1x(t))′. Let the admis-
sible matrix sequence (Definition 1.10) starting from G0 = E, B0 = F be realized up
to Gμ which is nonsingular. Let μ ∈ N be the smallest such index.

Consider the involved admissible projectors Q0, . . . ,Qμ . We have Qμ = 0, Pμ = I,

Πμ = Πμ−1 for trivial reasons. Due to Proposition 1.13, the intersections
�
Ni are

trivial,
�
Ni = Ni∩ (N0 + · · ·+Ni−1) = {0}, i = 1, . . . ,μ−1,

and therefore

N0+ · · ·+Ni−1 =N0⊕·· ·⊕Ni−1, Xi =N0⊕·· ·⊕Ni−1, i= 1, . . . ,μ−1. (1.31)

From (1.31) we derive the relations

QiQ j = 0, j = 0, . . . , i−1, i = 1, . . . ,μ−1, (1.32)

which are very helpful in computations. Recall the properties

GiPi−1 = Gi−1, Bi = BiΠi−1, i = 1, . . . ,μ ,
GiQ j = B jQ j, j = 0, . . . , i−1, i = 0, . . . ,μ−1,

from Section 1.2 which will be used frequently.
Applying G0 = G0P0 = G0Π0 we rewrite the DAE (1.30) as

G0(Π0x(t))′+B0x(t) = q(t), (1.33)

and then, with B0 = B0P0 +B0Q0 = B0Π0 +G1Q0, as

G1P1P0(Π0x(t))′+B0Π0x(t)+G1Q0x(t) = q(t).

Now we use the relation

G1P1P0 = G1Π0P1P0 +G1(I−Π0)P1P0

= G1Π1−G1(I−Π0)Q1

= G1Π1−G1(I−Π0)Q1Π0Q1

to replace the first term. This yields

G1(Π1x(t))′+B1x(t)+G1{Q0x(t)− (I−Π0)Q1(Π0Q1x(t))′}= q(t).
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Proceeding further by induction we suppose

Gi(Πix(t))′ + Bix(t)

+ Gi

i−1

∑
l=0
{Qlx(t)− (I−Πl)Ql+1(ΠlQl+1x(t))′}= q(t) (1.34)

and, in the next step, using the properties Gi+1Pi+1Pi = Gi, BiQi = Gi+1Qi,
GiQl = Gi+1Ql , l = 0, . . . , i−1, and

Pi+1PiΠi =ΠiPi+1PiΠi +(I−Πi)Pi+1PiΠi

=Πi+1− (I−Πi)Qi+1

=Πi+1− (I−Πi)Qi+1ΠiQi+1,

we reach

Gi+1(Πi+1x(t))′ + Bi+1x(t)

+ Gi+1

i

∑
l=0
{Qlx(t)− (I−Πl)Ql+1(ΠlQl+1x(t))′}= q(t),

so that expression (1.34) can be used for all i = 1, . . . ,μ . In particular, we obtain

Gμ(Πμx(t))′ + Bμx(t)

+ Gμ
μ−1
∑

l=0
{Qlx(t)− (I−Πl)Ql+1(ΠlQl+1x(t))′}= q(t).

(1.35)

Taking into account that Qμ = 0, Pμ = I, Πμ = Πμ−1, and scaling with G−1
μ we

derive the equation

(Πμ−1x(t))′+G−1
μ Bμx(t)+

μ−1

∑
l=0

Qlx(t)−
μ−2

∑
l=0

(I−Πl)Ql+1(ΠlQl+1x(t))′ =G−1
μ q(t).

(1.36)
In turn, equation (1.36) can be decoupled into two parts, the explicit ODE with
respect to Πμ−1x(t),

(Πμ−1x(t))′+Πμ−1G−1
μ Bμx(t) =Πμ−1G−1

μ q(t), (1.37)

and the remaining equation

(I−Πμ−1)G−1
μ Bμx(t)+

μ−1

∑
l=0

Qlx(t)

−
μ−2

∑
l=0

(I−Πl)Ql+1(ΠlQl+1x(t))′ = (I−Πμ−1)G−1
μ q(t).

(1.38)
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Next, we show that equation (1.38) uniquely defines the component (I−Πμ−1)x(t)
in terms of Πμ−1x(t). We decouple equation (1.38) once again into μ further parts
according to the decomposition

I−Πμ−1 = Q0P1 · · ·Pμ−1 +Q1P2 · · ·Pμ−1 + · · ·+Qμ−2Pμ−1 +Qμ−1. (1.39)

Notice that QiPi+1 · · ·Pμ−1, i = 0, . . . ,μ−2 are projectors, too, and

QiPi+1 · · ·Pμ−1Qi = Qi,

QiPi+1 · · ·Pμ−1Q j = 0, if i �= j,

QiPi+1 · · ·Pμ−1(I−Πl)Ql+1 = Qi(I−Πl)Ql+1 = 0, for l = 0, . . . , i−1,
QiPi+1 · · ·Pμ−1(I−Πi)Qi+1 = QiQi+1.

Hence, multiplying (1.38) by QiPi+1 · · ·Pμ−1, i = 0, . . . ,μ−2, and Qμ−1 yields

QiPi+1 · · ·Pμ−1G−1
μ Bμx(t)+Qix(t)−QiQi+1(ΠiQi+1x(t))′

−
μ−2

∑
l=i+1

QiPi+1 · · ·PlQl+1(ΠlQl+1x(t))′ = QiPi+1 · · ·Pμ−1G−1
μ q(t) (1.40)

for i = 0, . . . ,μ−2 and

Qμ−1G−1
μ Bμx(t)+Qμ−1x(t) = Qμ−1G−1

μ q(t). (1.41)

Equation (1.41) uniquely determines the component Qμ−1x(t) as

Qμ−1x(t) = Qμ−1G−1
μ q(t)−Qμ−1G−1

μ Bμx(t),

and the formula contained in (1.40) for i = μ−2 gives

Qμ−2x(t) =

Qμ−2Pμ−1G−1
μ q(t)−Qμ−2Pμ−1G−1

μ Bμx(t)−Qμ−2Qμ−1(Πμ−2Qμ−1x(t))′,

and so on, i.e., in a consecutive manner we obtain expressions determining the com-
ponents Qix(t) with their dependence on Πμ−1x(t) and Qi+ jx(t), j = 1, . . . ,μ−1−
i.

To compose an expression for the whole solution x(t) there is no need for the
components Qix(t) themselves, i = 0, . . . ,μ − 1. But one can do it with Q0x(t),
Πi−1Qix(t), i = 1, . . . ,μ−1, which corresponds to the decomposition

I = Q0 +Π0Q1 + · · ·+Πμ−2Qμ−1 +Πμ−1. (1.42)

For this purpose we rearrange the system (1.40), (1.41) once again by multiplying
(1.41) by Πμ−2 and (1.40) for i = 1, . . . ,μ − 2 by Πi−1. Let us remark that, even
though we scale with projectors (which are singular matrices) here, nothing of the
equations gets lost. This is due to the relations
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Qi = QiΠi−1Qi = (Πi−1 +(I−Πi−1))QiΠi−1Qi

= (I +(I−Πi−1)Qi)Πi−1Qi,

Πi−1Qi = (I− (I−Πi−1)Qi)Qi,

(1.43)

which allow a one-to-one translation of the components Qix(t) and Πi−1Qix(t) into
each other. Choosing notation according to the decomposition (1.42),

v0(t) := Q0x(t), vi(t) :=Πi−1Qix(t), i = 1, . . . ,μ−1, u(t) :=Πi−1x(t), (1.44)

we obtain the representation, respectively decomposition

x(t) = v0(t)+ v1(t)+ · · ·+ vμ−1(t)+u(t) (1.45)

of the solution as well as the structured system resulting from (1.37), (1.40), and
(1.41):
⎡
⎢⎢⎢⎢⎢⎢⎣

I
0 N01 · · · N0,μ−1

. . . . . .
...

. . . Nμ−2,μ−1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u′(t)
0

v′1(t)
...

v′μ−1(t)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

W
H0 I

...
. . .

...
. . .

Hμ−1 I

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u(t)
v0(t)

...

...
vμ−1(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

Ld
L0
...
...

Lμ−1

⎤
⎥⎥⎥⎥⎥⎥⎦

q(t)

(1.46)

with the m×m blocks

N01 :=−Q0Q1,

N0 j := Q0P1 · · ·Pj−1Q j, j = 2, . . . ,μ−1,
Ni,i+1 :=−Πi−1QiQi+1, i = 1, . . . ,μ−2,
Ni j :=−Πi−1QiPi+1 · · ·Pj−1Q j, j = i+2, . . . ,μ−1, i = 1, . . . ,μ−2,

W :=Πμ−1G−1
μ Bμ ,

H0 := Q0P1 · · ·Pμ−1G−1
μ Bμ ,

Hi :=Πi−1QiPi+1 · · ·Pμ−1G−1
μ Bμ , i = 1, . . . ,μ−2,

Hμ−1 :=Πμ−2Qμ−1G−1
μ Bμ ,

and
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Ld :=Πμ−1G−1
μ ,

L0 := Q0P1 · · ·Pμ−1G−1
μ ,

Li :=Πi−1QiPi+1 · · ·Pμ−1G−1
μ , i = 1, . . . ,μ−2,

Lμ−1 :=Πμ−2Qμ−1G−1
μ .

System (1.46) almost looks like a DAE in Weierstraß–Kronecker form. However,
compared to the latter it is a puffed up system of dimension (μ +1)m. The system
(1.46) is equivalent to the original DAE (1.30) in the following sense.

Proposition 1.20. Let the DAE (1.30), with coefficients E,F ∈ L(Rm), have the
characteristic values

r0 ≤ ·· · ≤ rμ−1 < rμ = m.

(1) If x(.) is a solution of the DAE (1.30), then the components u(.),v0(.), . . . ,
vμ−1(.) given by (1.44) form a solution of the puffed up system (1.46).

(2) Conversely, if the functions u(.),v0(.), . . . ,vμ−1(.) are a solution of the sys-
tem (1.46) and if, additionally, u(t0) =Πμ−1u(t0) holds for a t0 ∈ I, then the
compound function x(.) defined by (1.45) is a solution of the original DAE
(1.30).

Proof. It remains to verify (2). Due to the properties of the coefficients, for
each solution of system (1.46) it holds that vi(t) = Πi−1Qivi(t), i = 1, . . . ,μ − 1,
v0(t) = Q0v0(t), which means that the components vi(t), i = 0, . . . ,μ−1, belong to
the desired subspaces.

The first equation in (1.46) is the explicit ODE u′(t) +Wu(t) = Ldq(t). Let
uq(.) denote the solution fixed by the initial condition uq(t0) = 0. We have uq(t) =
Πμ−1uq(t) because of W = Πμ−1W , Ld = Πμ−1Ld . However, for each arbitrary
constant c ∈ im(I−Πμ−1), the function ū(.) := c+uq(.) solves this ODE but does
not belong to imΠμ−1 as we want it to.

With the initial condition u(t0) = u0 ∈ imΠμ−1 the solution can be kept in the
desired subspace, which means that u(t) ∈ imΠμ−1 for all t ∈ I. Now, by carrying
out the decoupling procedure in reverse order and putting things together we have
finished the proof. ��

System (1.46) is given in terms of the original DAE. It shows in some detail the
inherent structure of that DAE. It also serves as the idea of an analogous decoupling
of time-varying linear DAEs (see Section 2.6).

Example 1.21 (Decoupling of an index-2 DAE). We reconsider the regular index-2
DAE

⎡
⎣

1 0 0
0 0 1
0 0 0

⎤
⎦x′+

⎡
⎣

1 1 1
0 1 0
1 0 1

⎤
⎦x = q

from Example 1.8, with the projectors



1.2 Projector based decoupling 29

Π1 = P0P1 =

⎡
⎣

0 0 0
0 0 0
−1 0 1

⎤
⎦ , Q0 =

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ , P0Q1 =

⎡
⎣

1 0 0
0 0 0
1 0 0

⎤
⎦ .

The DAE itself can be rewritten without any differentiations of equations as

(−x1 + x3)
′ = q2 +q3−q1, (1.47)

x′1 + x2 = (q1−q3), (1.48)

x1 +
1
2
(−x1 + x3) =

1
2

q3. (1.49)

Obviously, Π1x reflects the proper state variable −x1 + x3, for which an explicit
ODE (1.47) is given. P0Q1x refers to the variable x1 that is described by the algebraic
equation (1.49) when the solution −x1 + x3 is already given by (1.47). Finally, Q0x
reflects the variable x2 which can be determined by (1.48). Note, that the variable x1
has to be differentiated here. Simple calculations yieldW =Πμ−1G−1

2 B0Πμ−1 = 0,
H0 = Q0P1G−1

2 B0Πμ−1 = 0 and

H1 = Q1G−1
2 B0Πμ−1 =

⎡
⎣
− 1

2 0 1
2

0 0 0
− 1

2 0 1
2

⎤
⎦ .

This way the DAE decouples as

(Π1x)′ =Π1G−1
2 q, (1.50)

−Q0Q1(Π0Q1x)′+Q0x = Q0P1G−1
2 q, (1.51)

Π0Q1 +H1Π1x =Π0Q1G−1
2 q. (1.52)

These equations mean in full detail

(⎡
⎣

0
0

−x1 + x3

⎤
⎦
)′

=

⎡
⎣

0 0 0
0 0 0
−1 1 1

⎤
⎦q,

⎡
⎣

0 0 0
1 0 0
0 0 0

⎤
⎦
(⎡
⎣

x1
0
x1

⎤
⎦
)′

+

⎡
⎣

0
x2
0

⎤
⎦=

⎡
⎣

0 0 0
1 0 −1
0 0 0

⎤
⎦q,

⎡
⎣

x1
0
x1

⎤
⎦+
⎡
⎣
− 1

2 0 1
2

0 0 0
− 1

2 0 1
2

⎤
⎦
⎡
⎣

0
0

−x1 + x3

⎤
⎦=

⎡
⎣

0 0 1
2

0 0 0
0 0 1

2

⎤
⎦q.

Dropping the redundant equations as well as all zero lines one arrives exactly at the
compressed form (1.47)–(1.49). ��
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1.2.3 Complete decoupling

A special smart choice of the admissible projectors cancels the coefficients Hi in
system (1.46) so that the second part no longer depends on the first part.

Theorem 1.22. Let {E,F}, E,F ∈ L(Rm), be a pair with characteristic values

r0 ≤ ·· · ≤ rμ−1 < rμ = m.

Then there are admissible projectors Q0, . . .Qμ−1 such that the coupling coefficients
H0, . . . ,Hμ−1 in (1.46) vanish, that is, (1.46) decouples into two independent sub-
systems.

Proof. For any given sequence of admissible projectors Q0, . . . ,Qμ−1 the coupling
coefficients can be expressed as H0 = Q0∗Πμ−1 and Hi = Πi−1Qi∗Πμ−1 for i =
1, . . . ,μ−1, where we denote

Q0∗ := Q0P1 · · ·Pμ−1G−1
μ B0,

Qi∗ := QiPi+1 · · ·Pμ−1G−1
μ B0Πi−1, i = 1, . . . ,μ−2,

Qμ−1∗ := Qμ−1G−1
μ B0Πμ−2.

We realize that Qi∗Qi = Qi, i = 0, . . . ,μ−1, since

Qμ−1∗Qμ−1 = Qμ−1G−1
μ B0Πμ−2Qμ−1 = Qμ−1G−1

μ Bμ−1Qμ−1

= Qμ−1G−1
μ GμQμ−1 = Qμ−1,

and so on for i = μ − 2, . . . ,0. This implies (Qi∗)2 = Qi∗, i.e., Qi∗ is a projector
onto Ni, i = 0, . . . ,μ − 1. By construction one has N0 + · · ·+ Ni−1 ⊆ kerQi∗ for
i = 1, . . . ,μ−1. The new projectors Q̄0 := Q0, . . . , Q̄μ−2 := Qμ−2, Q̄μ−1 := Qμ−1∗
are also admissible, but now, the respective coefficient H̄μ−1 disappears in (1.46).
Namely, the old and new sequences are related by

Ḡi = Gi, i = 0, . . . ,μ−1, Ḡμ = Gμ +Bμ−1Qμ−1∗ = GμZμ

with nonsingular Zμ := I +Qμ−1Qμ−1∗Pμ−1. This yields

Q̄μ−1∗ := Q̄μ−1Ḡμ−1B0Πμ−2 = Qμ−1∗Z−1
μ G−1

μ B0Πμ−2

= Qμ−1G−1
μ B0Πμ−2 = Qμ−1∗ = Q̄μ−1

because of
Qμ−1∗Z−1

μ = Qμ−1∗(I−Qμ−1Qμ−1∗Pμ−1) = Qμ−1,

and hence
H̄μ−1 := Π̄μ−2Q̄μ−1∗Π̄μ−1 =Πμ−2Q̄μ−1Π̄μ−1 = 0.

We show by induction that the coupling coefficients disappear stepwise with an
appropriate choice of admissible projectors. Assume Q0, . . . ,Qμ−1 to be such that
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Hk+1 = 0, . . . , Hμ−1 = 0, (1.53)

or, equivalently,
Qk+1∗Πμ−1 = 0, . . . , Qμ−1∗Πμ−1 = 0,

for a certain k, 0 ≤ k ≤ μ − 2. We build a new sequence by letting Q̄i := Qi for
i = 0, . . . ,k− 1 (if k ≥ 1) and Q̄k := Qk∗. Thus, QkP̄k = −Q̄kPk and the projectors
Q̄0, . . . , Q̄k are admissible. The resulting two sequences are related by

Ḡi = GiZi, i = 0, . . . ,k+1,

with factors

Z0 = I, . . . , Zk = I, Zk+1 = I +QkQk∗Pk, Z−1
k+1 = I−QkQk∗Pk.

We form Q̄k+1 := Z−1
k+1Qk+1Zk+1 = Z−1

k+1Qk+1. Then, Q̄0, . . . , Q̄k+1 are also admissi-
ble. Applying Lemma 1.18 we proceed with

Ḡ j = G jZ j, Q̄ j := Z−1
j Q jZ j, j = k+2, . . . ,μ−1,

and arrive at a new sequence of admissible projectors Q̄0, . . . , Q̄μ−1. The invertibility
of Z j is ensured by Lemma 1.18. Putting Yk+1 := Zk+1 and, exploiting Lemma 1.18,

Yj := Z jZ−1
j−1 = I +Q j−1(Π̄ j−2Q̄ j−1−Π j−2Q j−1)+

j−2

∑
l=0

QlΠ̄ j−2Q̄ j−1, j ≥ k+2.

Additionally, we learn from Lemma 1.18 that the subspaces N0 ⊕ ·· · ⊕ Nj and
N̄0⊕·· ·⊕ N̄ j coincide. The expression for Yj, j ≥ k+2, simplifies to

Yj = I +
j−2

∑
l=0

QlΠ̄ j−2Q̄ j−1 = I +
j−2

∑
l=k

QlΠ̄ j−2Q j−1

for our special new projectors because the following relations are valid:

Q jZ j = 0, Q̄ j = Z−1
j Q j, Π̄ j−2Q̄ j−1 = Π̄ j−2Z−1

j−1Q j−1 = Π̄ j−2Q j−1,

Q j−1(Π̄ j−2Q̄ j−1−Π j−2Q j−1) = Q j−1(Π̄ j−2Q j−1−Π j−2Q j−1) = 0.

We have to verify that the new coupling coefficients H̄k and H̄ j, j≥ k+1, disappear.
We compute Q̄kZ−1

k+1 = Q̄k− Q̄kPk = Q̄kQk = Qk and

Z j−1Z−1
j = Y−1

j = I−
j−2

∑
l=k

QlΠ̄ j−2Q j−1, j ≥ k+2. (1.54)

For j ≥ k+1 this yields

Q̄ j∗Π̄μ−1 = Q̄ jP̄j+1 · · · P̄μ−1Ḡ−1
μ BΠ̄μ−1 = Z−1

j Q jY−1
j+1Pj+1 · · ·Y−1

μ−1Pμ−1Y−1
μ BΠ̄μ−1
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and, by inserting (1.54) into the last expression,

Q̄ j∗Π̄μ−1 =

Z−1
j Q j(I−

j−1

∑
l=k

QlΠ̄ j−1Q j)Pj+1 · · ·Pμ−1(I−
μ−2

∑
l=k

QlΠ̄μ−2Qμ−1)G−1
μ BΠ̄μ−1.

Rearranging the terms one finds

Q̄ j∗Π̄μ−1 = (Z−1
j Q jPj+1 · · ·Pμ−1 +C j, j+1Q j+1Pj+2 · · ·Pμ−1 (1.55)

+ · · ·+C j,μ−2Qμ−2Pμ−1 +C j,μ−1Qμ−1)G−1
μ BΠ̄μ−1.

The detailed expression of the coefficients C j,i does not matter at all. With analogous
arguments we derive

Q̄k∗Π̄μ−1 = (Qk∗Pk+1 · · ·Pμ−1 +Ck, j+1Qk+1Pk+2 · · ·Pμ−1 (1.56)

+ · · ·+Ck,μ−2Qμ−2Pμ−1 +Ck,μ−1Qμ−1)G−1
μ BΠ̄μ−1.

Next we compute

Π̄μ−1 =Πk−1P̄kP̄k+1 · · · P̄μ−1 =Πk−1P̄kPk+1 · · ·Pμ−1

=Πk−1(Pk +Qk)P̄kPk+1 · · ·Pμ−1 =Πμ−1−QkQ̄kΠμ−1,

and therefore

G−1
μ BΠ̄μ−1 = G−1

μ B(Πμ−1−Πk−1QkQ̄kΠμ−1) = G−1
μ BΠμ−1−QkQ̄kΠμ−1.

Regarding assumption (1.53) and the properties of admissible projectors we have

Qμ−1G−1
μ BΠ̄μ−1 = Qμ−1G−1

μ BΠμ−1−Qμ−1Q̄kΠμ−1 = Qμ−1∗Πμ−1 = 0,

and, for i = k+1, . . . ,μ−2,

QiPi+1 · · ·Pμ−1BΠ̄μ−1 = QiPi+1 · · ·Pμ−1BΠμ−1−QiQ̄kΠμ−1 = Qi∗Πμ−1 = 0.

Furthermore, taking into account the special choice of Q̄k,

QkPk+1 · · ·Pμ−1BΠ̄μ−1 = QkPk+1 · · ·Pμ−1BΠμ−1−QkQ̄kΠμ−1

= (Qk∗ − Q̄k)Πμ−1 = 0.

This makes it evident that all single summands on the right-hand sides of the for-
mulas (1.55) and (1.56) disappear, and thus Q̄ j∗Π̄μ−1 = 0 for j = k, . . . ,μ−1, that
is, the new decoupling coefficients vanish. In consequence, starting with any admis-
sible projectors we apply the above procedure first for k = μ−1, then for k = μ−2
up to k = 0. At each level an additional coupling coefficient is canceled, and we
finish with a complete decoupling of the two parts in (1.46). ��
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Definition 1.23. Let the DAE (1.30), with coefficients E,F ∈ L(Rm), have the struc-
tural characteristic values

r0 ≤ ·· · ≤ rμ−1 < rμ = m,

and let the system (1.46) be generated by an admissible matrix sequence G0, . . . ,Gμ .
If in (1.46) all coefficients Hi, i = 0, . . . ,μ −1, vanish, then the underlying admis-
sible projectors Q0, . . . ,Qμ−1 are called completely decoupling projectors for the
DAE (1.30).

The completely decoupled system (1.46) offers as much insight as the Weierstraß-
Kronecker form does.

Example 1.24 (Complete decoupling of an index-2 DAE). We reconsider once more
the regular index-2 DAE

⎡
⎣

1 0 0
0 0 1
0 0 0

⎤
⎦x′+

⎡
⎣

1 1 1
0 1 0
1 0 1

⎤
⎦x = q

from Examples 1.8 and 1.21. The previously used projectors do not yield a complete
decoupling. We now use a different projector Q1 such that

Q1 =

⎡
⎣

1
2 0 1

2
− 1

2 0 − 1
2

1
2 0 1

2

⎤
⎦ , G2 =

⎡
⎣

2 1 1
0 1 1
1 0 1

⎤
⎦ ,

and further

Π1 = P0P1 =

⎡
⎣

1
2 0 − 1

2
0 0 0
− 1

2 0 1
2

⎤
⎦ , Q0 =

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ , P0Q1 =

⎡
⎣

1
2 0 1

2
0 0 0
1
2 0 1

2

⎤
⎦ .

The DAE itself can be rewritten without any differentiations of equations as

(x1− x3)
′ = q1−q2−q3,

(x1 + x3)
′+2x2 = q1+q2−q3,

x1 + x3 = q3.

Obviously, Π1x again reflects the proper state variable −x1 + x3, for which an ex-
plicit ODE is given. P0Q1x refers to the variable x1+x3 that is described by the alge-
braic equation. Finally, Q0x reflects the variable x2. Simple calculations yieldW =
Πμ−1G−1

2 B0Πμ−1 = 0,H0 = Q0P1G−1
2 B0Πμ−1 = 0 andH1 = Q1G−1

2 B0Πμ−1 = 0.
In this way the DAE decouples completely as
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(Π1x)′ =Π1G−1
2 q,

−Q0Q1(Π0Q1x)′+Q0x = Q0P1G−1
2 q,

Π0Q1 =Π0Q1G−1
2 q.

These equations mean in full detail

(⎡
⎣

1
2 (x1− x3)

0
− 1

2 (x1− x3)

⎤
⎦
)′

=

⎡
⎣

1
2 − 1

2 −
1
2

0 0 0
− 1

2
1
2

1
2

⎤
⎦q,

⎡
⎣

0 0 0
1
2 0 1

2
0 0 0

⎤
⎦
(⎡
⎣

1
2 (x1 + x3)

0
1
2 (x1 + x3)

⎤
⎦
)′

+

⎡
⎣

0
x2
0

⎤
⎦=

⎡
⎣

0 0 0
1
2

1
2 −

1
2

0 0 0

⎤
⎦q,

⎡
⎣

1
2 (x1 + x3)

0
1
2 (x1 + x3)

⎤
⎦=

⎡
⎣

0 0 1
2

0 0 0
0 0 1

2

⎤
⎦q.

Dropping the redundant equations as well as all zero lines one arrives exactly at the
compressed form described above. ��

Example 1.25 (Decoupling of the DAE in Example 1.5). The following matrix se-
quence is admissible for the pair {E,F} from Example 1.5 which is regular with
index 4:

G0 = E =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, Q0 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, B0 = F =

⎡
⎢⎢⎢⎢⎣

−α −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
,

G1 =

⎡
⎢⎢⎢⎢⎣

1 −1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, Q1 =

⎡
⎢⎢⎢⎢⎣

0 0 −1 0 0
0 0 −1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, Π0Q1 =

⎡
⎢⎢⎢⎢⎣

0 0 −1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
,

G2 =

⎡
⎢⎢⎢⎢⎣

1 −1 α 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, Q2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 1+α 0
0 0 0 1 0
0 0 0 −1 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, Π1Q2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 α 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
,
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G3 =

⎡
⎢⎢⎢⎢⎣

1 −1 α −α2 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, Q3 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 −1−α−α2

0 0 0 0 −1
0 0 0 0 1
0 0 0 0 −1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
, Π2Q3 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 −α2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
,

G4 =

⎡
⎢⎢⎢⎢⎣

1 −1 α −α2 α3

0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
, Π3 =

⎡
⎢⎢⎢⎢⎣

1 0 1 −α −α2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
,

and the characteristic values are r0 = r1 = r2 = r3 = 4,r4 = 5 and μ = 4. Addition-
ally, it follows that

Q3G−1
4 B0Π3 = 0, Q2P3G−1

4 B0Π3 = 0,

Q1P2P3G−1
4 B0Π3 = 0, Q0P1P2P3G−1

4 B0Π3 = 0,

and
Π3G−1

4 B0Π3 =−αΠ3. (1.57)

The projectors Q0,Q1,Q2,Q3 provide a complete decoupling of the given DAE
Ex′(t)+Fx(t) = q(t). The projectors Q0,Π0Q1,Π1Q2 and Π2Q3 represent the vari-
ables x2, x3, x4 and x5, respectively. The projector Π3 and the coefficient (1.57) de-
termine the inherent regular ODE, namely (the zero rows are dropped)

(x1+x3−αx4+α2x5)
′ −α(x1+x3−αx4+α2x5) = q1+q2−αq3+α2q4−α3q5.

It is noteworthy that no derivatives of the excitation q encroach in this ODE. ��

Notice that for DAEs with μ = 1, the completely decoupling projector Q0 is
uniquely determined. It is the projector onto N0 along S0 = {z ∈ R

m : B0z ∈ imG0}
(cf. Appendix A). However, for higher index μ > 1, there are many complete de-
couplings, as the next example shows.

Example 1.26 (Diversity of completely decoupling projectors). Let

E = G0 =

⎡
⎣

0 1 0
0 0 0
0 0 1

⎤
⎦ , F = B0 =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ ,

and choose projectors with a free parameter α:
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Q0 =

⎡
⎣

1 α 0
0 0 0
0 0 0

⎤
⎦ , P0 =

⎡
⎣

1 −α 0
0 1 0
0 0 1

⎤
⎦ , G1 =

⎡
⎣

1 1+α 0
0 0 0
0 0 1

⎤
⎦ , B1 = P0,

Q1 =

⎡
⎣

0 −(1+α) 0
0 1 0
0 0 0

⎤
⎦ , Π1 =

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ , G2 =

⎡
⎣

1 1 0
0 1 0
0 0 1

⎤
⎦ ,

G−1
2 =

⎡
⎣

1 −1 0
0 1 0
0 0 1

⎤
⎦ , Q0P1G−1

2 B0 = Q0,

i.e., Q0 and Q1 are completely decoupling projectors for each arbitrary value α .
However, in contrast, the projector Π1 is independent of α . ��

1.2.4 Hierarchy of projector sequences for constant matrix pencils

The matrices Q0, . . . ,Qi are projectors, where Q j projects onto Nj = kerG j,
j = 0, . . . , i, with P0 := I − Q0, Π0 := P0 and Pj := I − Q j, Π j := Π j−1Pj,
�
N j := (N0 + · · ·+Nj−1)∩Nj, j = 1, . . . , i.

admissible (Def. 1.10)

(N0 + · · ·+Nj−1)�
�
N j ⊆ kerQ j, j = 1, . . . , i

Π j−1Q jQl = 0, l < j, j = 1, . . . , i

widely orthogonal (Def. 1.12)
Π j =Π ∗j , j = 0, . . . , i

regular admissible
�
N j = {0}, j = 1, . . . , i
Q jQl = 0, l < j, j = 1, . . . , i

widely orthogonal and regular

for regular index μ pencils

complete decoupling (Def. 1.23)
H0 = 0,H1 = 0, . . . ,Hμ−1 = 0
Πμ−1 = spectral projector (cf. Theorem 1.33)
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1.2.5 Compression to a generalized Weierstraß–Kronecker form

The DAE (1.30) as well as its decoupled version (1.35) comprise m equations. The
advanced decoupled system (1.46) is formally composed of m(μ + 1) equations;
however, it can be compressed back on an m-dimensional DAE without losing infor-
mation. The next lemma records essential properties to be used in the compression
procedure.

Lemma 1.27. The entries Ni j of the decoupled system (1.46) have the following
properties for i = 0, . . . ,μ−2:

Ni,i+1 =Ni,i+1ΠiQi+1,

Ni j =Ni jΠ j−1Q j, j = i+2, . . . ,μ−1,
kerNi,i+1 = kerΠiQi+1,

rankNi,i+1 = m− ri+1.

Proof. We use the additional subspaces Si := kerWiBi ⊆ R
m and the projectors

Wi ∈ L(Rm) with
kerWi = imGi, i = 0, . . . ,μ−1.

Let G−i be the generalized reflexive inverse of Gi with GiG−i Gi =Gi, G−i GiG−i = G−i ,
GiG−i = I−Wi and G−i Gi = Pi. We factorize Gi+1 as

Gi+1 = Gi +BiQi = Gi +WiBiQi +GiG−i BiQi = Gi+1Fi+1,

Gi+1 := Gi +WiBiQi, Fi+1 = I +PiG−i BiQi.

SinceFi+1 is invertible (cf. Lemma A.3), it follows that Gi+1 has rank ri+1 like Gi+1.
Furthermore, it holds that kerGi+1 = Ni∩Si. Namely, Gi+1z = 0 means that Giz =

0 and WiBiQiz = 0, i.e., z = Qiz and WiBiz = 0, but this is z ∈ Ni ∩ Si. Therefore,
Ni∩Si must have the dimension m− ri+1. Next we derive the relation

Ni∩Si = imQiQi+1. (1.58)

If z ∈ Ni ∩ Si then z = Qiz and Biz = Giw implying (Gi + BiQi)(Piw+Qiz) = 0,
and hence Piw+Qiz = Qi+1(Piw+Qiz) = Qi+1w. Therefore, z = Qiz = QiQi+1w.
Consequently, Ni ∩ Si ⊆ imQiQi+1. Conversely, assume z = QiQi+1y. Taking into
consideration that (Gi +BiQi)Qi+1 = 0, we derive z = Qiz and Biz = BiQiQi+1y =
−GiQi+1y, i.e., z ∈ Ni and z ∈ Si. Thus, relation (1.58) is valid.

Owing to (1.58) we have

rankQiQi+1 = dimNi∩Si = m− ri+1. (1.59)

If follows immediately that rankNi,i+1 = m− ri+1, and, since imPi+1 ⊆ kerNi,i+1,
rankPi+1 = ri+1, that imPi+1 = kerNi,i+1. ��
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We turn to the compression of the large system (1.46) on m dimensions. The
projector Q0 has rank m− r0, the projector Πi−1Qi has rank m− ri for i = 1, . . . ,μ−
1, and Πμ−1 has rank d := m−∑μ−1

j=0 (m− r j).
We introduce full-row-rank matrices Γi ∈ L(Rm,Rm−ri), i = 0, . . . ,μ − 1, and

Γd ∈ L(Rm,Rd) such that

imΓdΠμ−1 = Γd imΠμ−1 = R
d , kerΓd = im(I−Πμ−1) = N0 + · · ·+Nμ−1,

Γ0N0 = R
m−r0 , kerΓ0 = kerQ0,

ΓiΠi−1Ni = R
m−ri , kerΓi = kerΠi−1Qi, i = 1, . . . ,μ−1,

as well as generalized inverses Γ−d ,Γ−i , i = 0, . . . ,μ−1, such that

Γ−d Γd =Πμ−1, ΓdΓ−d = I,

Γ−i Γi =Πi−1Qi, ΓiΓ−i = I, i = 1, . . . ,μ−1,

Γ−0 Γ0 = Q0, Γ0Γ−0 = I.

If the projectors Q0, . . . ,Qμ−1 are widely orthogonal (cf. Proposition 1.13(6)), then
the above projectors are symmetric and Γ−d , Γ−i are the Moore–Penrose generalized
inverses. Denoting

H̃i := ΓiHiΓ−d , L̃i := ΓiLi, i = 0, . . . ,μ−1, (1.60)

W̃ := ΓdWΓ−d , L̃d := ΓdLd , (1.61)

Ñi j := ΓiNi jΓ−j , j = i+1, . . . ,μ−1, i = 0, . . . ,μ−2, (1.62)

and transforming the new variables

ũ = Γdu, ṽi = Γivi, i = 0, . . . ,μ−1, (1.63)

u = Γ−d ũ, vi = Γ−i ṽi, i = 0, . . . ,μ−1, (1.64)

we compress the large system (1.46) into the m-dimensional one
⎡
⎢⎢⎢⎢⎢⎢⎣

I
0 Ñ01 · · · Ñ0,μ−1

. . . . . .
...

. . . Ñμ−2,μ−1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ũ′(t)
0

ṽ′1(t)
...

ṽ′μ−1(t)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

W̃
H̃0 I

...
. . .

...
. . .

H̃μ−1 I

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ũ(t)
ṽ0(t)

...

...
ṽμ−1(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

L̃d
L̃0
...
...

L̃μ−1

⎤
⎥⎥⎥⎥⎥⎥⎦

q

(1.65)
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without losing any information. As a consequence of Lemma 1.27, the blocks Ñi,i+1
have full column rank m− ri+1 for i = 0, . . . ,μ−2.

Proposition 1.28. Let the pair {E,F}, E,F ∈ L(Rm) have the structural character-
istic values

r0 ≤ ·· · ≤ rμ−1 < rμ = m.

(1) Then there are nonsingular matrices L,K ∈ L(Rm) such that

LEK =

⎡
⎢⎢⎢⎢⎢⎢⎣

I
0 Ñ01 · · · Ñ0,μ−1

. . .
. . .

...
. . . Ñμ−2,μ−1

0

⎤
⎥⎥⎥⎥⎥⎥⎦
, LFK =

⎡
⎢⎢⎢⎢⎢⎢⎣

W̃
H̃0 I

...
. . .

...
. . .

H̃μ−1 I

⎤
⎥⎥⎥⎥⎥⎥⎦
,

with entries described by (1.60)–(1.62). Each block Ñi,i+1 has full column
rank m− ri+1, i = 0, . . . ,μ−2, and hence the nilpotent part in LEK has index
μ .

(2) By means of completely decoupling projectors, L and K can be built so
that the coefficients H̃0, . . . ,H̃μ−1 disappear, and the DAE transforms into
Weierstraß–Kronecker form (1.3) with l = ∑μ−1

i=0 (m− ri).

Proof. Due to the properties

Hi =HiΠμ−1 =HiΓ−d Γd , i = 0, . . . ,μ−1,

W =WΠμ−1 =WΓ−d Γd ,

Ni j =Ni jΠ j−1Q j =Ni jΓ−j Γj, j = 1, . . . ,μ−1, i = 0, . . . ,μ−2,

we can recover system (1.46) from (1.65) by multiplying on the left by

Γ− :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Γ−d
Γ−0

. . .

Γ−μ−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ L(Rm,R(μ+1)m)

using transformation (1.64) and taking into account that u = Γ−d ũ = Πμ−1u and
Πμ−1u′ = u′. The matrix Γ− is a generalized inverse of

Γ :=

⎡
⎢⎢⎢⎣

Γd
Γ0

. . .
Γμ−1

⎤
⎥⎥⎥⎦ ∈ L(R(μ+1)m,Rm)
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having the properties ΓΓ− = Im and

Γ−Γ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Γ−d Γd
Γ−0 Γ0

. . .
. . .

Γ−μ−1Γμ−1

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

Πμ−1
Q0

Π0Q1
. . .

Πμ−2Qμ−1

⎤
⎥⎥⎥⎥⎥⎦
.

The product K := Γ

⎡
⎢⎣

I
...
I

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

Γd

Γ0
...

Γμ−1

⎤
⎥⎥⎥⎥⎥⎦

is nonsingular. Our decomposition

now means that

x = Πμ−1x+Q0x+Π0Q1x+ · · ·+Πμ−2Qμ−1x

= [I · · · I]Γ−Γ

⎡
⎢⎣

I
...
I

⎤
⎥⎦x = [I · · · I]

⎡
⎢⎢⎢⎣

u
v0
...

vμ−1

⎤
⎥⎥⎥⎦

and the transformation (1.63) reads

⎡
⎢⎢⎢⎣

ũ
ṽ0
...

ṽμ−1

⎤
⎥⎥⎥⎦= Γ

⎡
⎢⎢⎢⎣

u
v0
...

vμ−1

⎤
⎥⎥⎥⎦= ΓΓ−Γ

⎡
⎢⎢⎢⎢⎣

I
...
...
I

⎤
⎥⎥⎥⎥⎦

x = Γ

⎡
⎢⎢⎢⎢⎣

I
...
...
I

⎤
⎥⎥⎥⎥⎦

x = Kx = x̃.

Thus, turning from the original DAE (1.30) to the DAE in the form (1.65) means
a coordinate transformation x̃ = Kx, with a nonsingular matrix K, combined with a
scaling by

L := [I · · · I] Γ−Γ

⎡
⎢⎢⎢⎢⎢⎣

Πμ−1
Q0P1 · · ·Pμ−1

. . .
Qμ−2Pμ−1

Qμ−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

I
...
...
I

⎤
⎥⎥⎥⎥⎦

G−1
μ .

L is a nonsingular matrix. Namely, LGμz = 0 means that

Πμ−1z+Q0P1 · · ·Pμ−1z+Π0Q1P2 · · ·Pμ−1z+ · · ·
+Πμ−3Qμ−2Pμ−1z+Πμ−2Qμ−1z = 0,


