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Foreword

The material contained in this book originated in interrogations about
modern practice in time series analysis.

e Why do we use models optimized with respect to one-step ahead forecast-
ing performances for applications involving multi-step ahead forecasts?

e Why do we infer ‘long-term’ properties (unit-roots) of an unknown process
from statistics essentially based on short-term one-step ahead forecasting
performances of particular time series models?

e Are we able to detect turning-points of trend components earlier than with
traditional signal extraction procedures?

The link between ‘signal extraction’ and the first two questions above is not
immediate at first sight. Signal extraction problems are often solved by suit-
ably designed symmetric filters. Towards the boundaries (t =1 ort = N) of a
time series a particular symmetric filter must be approximated by asymmet-
ric filters. The time series literature proposes an intuitively straightforward
solution for solving this problem:

e Stretch the observed time series by forecasts generated by a model.
e Apply the symmetric filter to the extended time series.

This approach is called ‘model-based’. Obviously, the forecast-horizon grows
with the length of the symmetric filter. Model-identification and estimation
of unknown parameters are then related to the above first two questions.

One may further ask, if this approximation problem and the way it is
solved by model-based approaches are important topics for practical purposes?
Consider some ‘prominent’ estimation problems:

e The determination of the seasonally adjusted actual unemployment rate.

e An assessment of the ‘trend’ of the actual GDP movement.

o Inferences about the ‘global heating’ in recently observed climatologic
changes.

These problems all suggest that there is some kind of ‘signal’ which is over-
lapped by undesirable perturbations which mask the actual state of an inter-
esting phenomenon. Formally, actuality of the estimates translates into bound-
ary signal estimation. Signals often have a prospective component towards the
boundary ¢ = N: the detection of a turning-point of a trend component is in-
formative about the future of the time series. So the corresponding estimation
problem is highly relevant for many applications. Furthermore, Since model-
based approaches like TRAMO/SEATS or Census X-12-ARIMA! are widely

! Although X-12-ARIMA is not a ‘pure’ model-based approach, see chapter 2,
the procedure nevertheless relies on forecasts for computing boundary estimates.
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used for ‘signal extraction’ one may then ask if the resulting method is effi-
cient®?

The empirical results obtained in chapter 7 and more recently in Wildi,
Schips[99]3 demonstrate that ‘traditional’ model-based boundary signal esti-
mates are far from being efficient. The examples demonstrate that the relative
mean-square error (between outputs of symmetric and asymmetric filters) can
be reduced substantially (more than 30% in the mean over all time series con-
sidered) when using the efficient estimation method presented in this book.
Moreover, the new method outperforms model-based approaches for all 41
time series in Wildi/Schips[99]. Optimal filter designs and properties of im-
portant statistics involved in the estimation problem are presented in chapters
3 and 4. The consistency, the efficiency and the asymptotic distribution of the
resulting filter parameter estimates are derived in chapter 5 for a wide class of
input signals (processes). An extension of this method which enables a faster
detection of turning points for ‘smooth’ trend components is also presented in
chapter 5. Chapter 6 presents finite sample issues and empirical examples are
to be found in chapters 7 and 8.

As shown in chapter 7 as well as in Wildi/Schips[99] the observed ineffi-
ciency of model-based approaches is partly due to wrongly inferred unit-roots.
The business survey data analyzed in Wildi/Schips[99] cannot be integrated
because the time series are bounded. However, traditional unit-root tests such
as (augmented) Dickey-Fuller or Phillips-Perron are often unable to reject the
null hypothesis (integration) for such time series.

It is in fact strange that ‘long-term’ dynamics (unit-roots) are often inferred
from statistics based on ‘short term’ one-step ahead forecasting performances
of particular time series models. Experience suggests that short term forecast-
ing performances generally do not allow for sufficiently strong rejection of the
null hypothesis : ‘Traditional’ ADF- or PP-test-statistics may be well-suited
for short-term (one-step ahead) forecasting but they are often misleading for
problems requiring good multi-step ahead forecasting performances.

In the general context of ‘signal extraction’, unit-roots are important because
they are related to particular restrictions of the asymmetric filters, see chapter
5. Therefore, great attention has been devoted to ‘unit-roots’ in this partic-
ular context and new solutions - which ‘fit’ specifically the signal extraction
problem - are presented in chapter 5.

It is known that one- and multi-step-ahead forecasting performances may be
conflicting, see chapter 1. Therefore it is surprising that few attention has been
deserved to efficiency issues in signal extraction problems.

3The authors analyze the performance of trend boundary estimates for a repre-
sentative sample of 41 business survey indicators
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Introduction

1.1 Overview

For many applications a well known problem is to ‘extract’ or equivalently to
estimate some predefined ‘signal’ or component from a time series contami-
nated by ‘noise’ (which is not necessarily a white noise process). Consider

Xt =)/t+l/t (11)

where X; is observed, Y; is the interesting signal and v; overlaps and ‘con-
taminates’ the signal. Let ¢ € Z (discrete time) and assume X;, Xs, ..., Xy
have been observed. The problem is to ‘compute’ values for the unknown
Y1,Ys, ..., Yn. The following figures illustrate some practically relevant signals
for monthly economic time series.

e In fig.1.1, a particular time series (described in chapter 7) and a ‘trend’
defined by the canonical decomposition (see section 2.3) can be seen.

o In fig.1.2, the same time series and the ‘seasonally adjusted’ component
(signal) defined by the canonical decomposition (see section 2.3) can be
seen.

o Finally, both signals are compared in fig.1.3.

These examples are treated in detail in chapters 7 and 8. The signals are doc-
umented in chapter 2.

A general approach for estimating Y; given X; in 1.1 relies on stochastic
processes. The observable process X; is then called the input process or the
input signal and Y; is called the output signal (this is because Y; can often
be estimated by the output of a particular filter, see section 1.2 below). It
is intuitively reasonable to allow a signal estimation method to depend on
the particular stochastic ‘properties’ of the input process X; in 1.1. As an
example, assume
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Xt == Yi + Ay cos(twy + D1)
X =Y+ Ay COS(twl + @1) + Az cos(tws + P2)
where wy # wy and @4 and P; are independent random variables uniformly dis-

tributed in [—w, 7]. Suppose the interesting signal is given by Y; = cos(tw+®),
where @ is uniformly distributed in the interval [—m,n]. X, i = 1,2 and Y}
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Fig. 1.8. Trend and seasonally adjusted series

are particular harmonic processes. The latter (Y;) can be extracted from Xo,
by eliminating A; cos(twi +®1) and Aj cos(twe +P2). This may be achieved by
a suitable ‘filter’ (see chapter 3). If the input process is X;; instead, then the
same filter could be used for extracting Y; in principle. However, it is readily
seen that the resulting estimation method would be unnecessarily complicated.
In fact, a simpler filter eliminating A; cos(tw; + @1) ‘only’ could be used. For
processes which are not deterministic (as the harmonic processes above) too
complicated devices are generally inefficient: eliminating additional compo-
nents involves a ‘cost’ which is quantified in chapter 5. Therefore, knowledge
of particular stochastic properties of the DGP (Data Generating Process)
of X; is necessary for computing efficient signal estimates. If the relevant
properties of X; are unknown, then they must be inferred from the sample
X1, ..., Xn. Model-based approaches (MBA) are widely used for solving signal
extraction problems because they try to infer the DGP of X; from a finite
sample X7, ..., Xn. Resulting signal estimates can account for stochastic prop-
erties of the input signal X; but the efficiency cannot be asserted in general
(see section 1.2).

A new method, called direct filter approach (DFA) is presented here for
solving the signal estimation problem. The main advantages of this approach
are efficiency and flexibility. Filters can be optimized with respect to the tra-
ditional mean square error criterion or with respect to another practically
important objective, namely the ‘fast detection of turning-points’. Often, sig-
nal estimates are subject to significant time delays towards the end point
t = N of a finite sample. Therefore, ‘turning-points’ of the signal cannot be
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detected ‘in time’. The DFA enables to constrain filters such that the time
delay becomes smaller. These issues are analyzed in chapters 3 and 5. Model-
based approaches do not allow for time delay constraints.

Unit-roots of the DGP are important properties of the input signal which
affect the performance of the estimation procedure if they are ignored, see
chapter 7. It is shown in chapter 5 that unit-roots of the DGP ‘translate’ into
particular constraints for the optimal asymmetric filter. In principle these
constraints allow for more general non-stationarities than ‘unit-roots’ of the
DGP only. A formal procedure for testing these hypotheses (constraints) is
presented in chapter 5. The advantage of such a test is that it is specifically de-
signed for the signal estimation problem whereas ‘traditional’ unit-root tests
(such as Dickey-Fuller or Phillips-Perron for example) are derived from one-
step ahead forecasting performances (of a model for the DGP) only. Therefore,
the power of ‘traditional’ tests against stationary alternatives with roots close
to the unit-circle is typically low (this situation is common for a lot of appli-
cations including many economic time series) because a ‘long-term’ property
(a unit-root at frequency zero) is inferred from a statistic based on ‘short-
term’ performances. Cochrane [18], p.914, argues “These models (ARIMA) ...
draw inferences about the long-run dynamics from a model fit to the short-
run dynamics ... However, if the long-run dynamics cannot be captured in the
model used to study the short-run, these identification procedures bias con-
clusions about long-run behavior”. The new test implicitly accounts for one-
and multi-step ahead forecasting performances and it is explicitly designed
for the signal estimation problem.

For the proposed DFA, particular attention is accorded to finite sample
issues (overfitting problem, see chapter 6). ‘Parsimony’ in the sense of ‘cau-
tiously’ parameterized models (see Box and Jenkins [9]) is a relevant con-
cept. Feldstein [31], p.829, argues: “A useful model is not one that is ‘true’
or ‘realistic’ but one that is parsimonious, plausible and informative”. The
proposed direct filter approach is based on a new filter class, so called Zero-
Pole-Combination (ZPC-) filters. ZPC-filters are obtained by a parsimonious
parameterization of ARMA-filters for which each parameter (degree of free-
dom) becomes straightforwardly interpretable, see chapter 3.

Although the principle of parsimony may help in alleviating the overfitting
problem, it is not a ‘panacea’. Therefore, new solutions are proposed for the
DFA in order to avoid specific overfitting problems, see chapter 6. Empirical
evidences listed in chapters 7 and 8 confirm the effectiveness of the proposed
method. Simulated and ‘real-world’ time series are analyzed and the perfor-
mances of the DFA and the MBA are compared both ‘in’ and ‘out of sample’.

A signal estimation method which relies on an explicit model for the DGP
of X; is called a MBA. Different methods have been proposed which are char-
acterized by various assumptions and/or model structures. Chapter 2 provides
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an (necessarily limited) overview on the topic. Model-based approaches are
often referenced as ‘the MBA’ here and in the following chapters (despite
methodological differences of various approaches) by opposition to ‘the DFA’
which does not rely on an explicit model for the DGP of X;. A brief descrip-
tion of the MBA is proposed in the following section. It is suggested that the
optimization criterion underlying the MBA does not ‘match’ the signal esti-
mation problem for misspecified models (which is the rule in practice). There-
fore, model-based estimates may be inefficient. Empirical results in chapter 7
as well as in Wildi/Schips[99] confirm this statement.

1.2 A General Model-Based-Approach

For ‘general’ (stationary or non-stationary integrated) linear stochastic pro-
cesses, the signal estimation problem is solved by linear filters. A (linear) filter
is a sequence Vi, k € Z of square summable (in our context real) numbers:
Y re oo [76]? < 0. MA-, AR- and ARMA-filters are characterized by partic-

ular finite sets of parameters generating <. If the sequences Y and X; are
related by

Y= Z YeXt—k (1.2)

k=—o0

then Y;, X, are called the output and the input signals of the filter i respec-
tively. If X; = Y3 +14 where X3, Y; and 14 are linear stochastic processes, then
it has been shown that the best estimate Y; (in the mean square sense) of V; is
the output of a particular linear filter if some ‘mild’ assumptions are satisfied
(see Whittle [95] for stationary X; and Bell 4] for non-stationary integrated
Xy; results for non-linear processes are presented in Gihman and Skorohod
[39], p.273-274).

For a realization of infinite length (..., X_2, X_1, Xo, X1, X2,...) (infinite
sample), the best extraction filter is generally symmetric (vx = v-&,k > 0)
and of infinite order (i.e. there does not exist a ng such that v, = 0 for all
k > ng ). The symmetry ensures that the phase or equivalently the time shift
of the filter vanishes, see chapter 3. The following example illustrates these
properties for a particular signal estimation problem: X is given by 1.1, where
14 is a white noise process and Y; is a random walk (so called Muth-model,
see for example Mills [67] p.69 fT.):

Xi =Y+
Y=Y 1+e&

where ¢;, 1; are independent iid sequences. The best mean square estimate of
the signal (the random-walk) is then given by :
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L (1-0° X i
=g 2 e
k=—o00
where  depends on the signal to noise ratio (the ratio of the variances of v,
(1-06)
1-62

exponentially fast but they never vanish if 8 # 0.

gl% are symmetric and decay

and €;). The optimal filter coefficients

Clearly, filters of infinite order cannot be used if the available input sample
X1,...,Xn is finite. But the symmetry property leads to problems even for
filters of finite orders. Difficulties arise if ¢ is ‘close’ to the boundaries t = 1
or t = N of the sample. Therefore, the filter output ¥; of the symmetric filter
(which solves the so called signal extraction problem) must be estimated too,

say by l}t. The latter is called a solution of the finite sample signal estimation
problem. Model-based approaches provide solutions for both Y; and Y. The
latter problem is solved as follows (see Stier and Wildi [87] and Wildi [98]) :

e replace unknown X; (i < 1 or 4 > N) in 1.2 by fore- and/or backecasts
X; generated from a model of the DGP (for example an ARIMA or a
RegARIMA-model, see Findley et al.[32] or EUROSTAT [30])

e apply the symmetric filter (vx), .7 to the ‘extended’ sample XP :=

X t¢{1,..,N}
X: else

One obtains :

o0
> wmXiy, (1.3)

k=—
t-‘;o t—N-1
= Z Ve Xi—k + Z ’)’kXt k+Z')’kXt k
k=t—-N k=-o00 k=t
t—-N-1
Z WXk + D 'Ykzat ki X5 +Z’7kzat —k X
k=t—N k=—o0 =t
N N t—N-1 N oo
= Z 1—5X —i—Z ( Z 'ykat_;m) X; +Z <Z "}’k(ht—k,j) X;
j=1 k=—00 j=1 \k=t
N
=ny X; (1.4)

1

[
Il

where a;_j ; are the coefficients of X;, j = 1,..., N, in the (linear) forecasting
function of X;_, ift —k ¢ {1,..., N} and

~N-1 .
Ry 1= d Vo e S Wk + ey Ykt = 1,y N (1.5)
7 0 else '
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Note that (§¢—;);=1,..,~ depends on t and that it is an asymmetric filter in
general.

If the DGP of X, is known, then the above estimate §'t satisfies a mean
square optimality criterion (see for example Cleveland [15], Bell [3], Bell [4],
Huot and all [55] and Bobbitt and Otto [7]). The ‘true model’ (DGP) can be
used for

1. linearizing the sample (identify ‘outliers’ or ‘shifts’ and remove them from
the original series)

2. supplying missing values

3. defining components and corresponding symmetric signal extraction filters
for realizations of infinite length (see chapter 2)

4. supplying fore- and backcasts in order to compute signal estimates for
finite samples.

In the following, the last point i.e. the determination of an efficient signal es-
timate for finite samples is analyzed. This is an important problem for many
applications (an example is given in section 1.5) because in practice only
finitely many observations of an input process X; are available. It is now sug-
gested that the MBA does not efficiently solve this problem if the DGP is
unknown.

If the DGP is unknown, then a ‘suitable’ model must first be identified. In
this case, ‘misspecification’ is the rule for most applications, see for example
Box [8]. Therefore, it is generally impossible to assert optimality properties
for the proposed MBA. Also, in case of misspecification the minimization of
the one-step ahead mean-square forecasting error does not necessarily ‘match’
the signal estimation problem (for finite samples) because 1.3 involves one-
and multi-step-ahead forecasts. Clements and Hendry [14], p.244, argue : “as
it is not possible to prove that 1-step estimation is optimal when models are
misspecified, dynamic estimation could improve multi-period forecast accu-
racy” (dynamic estimation means that parameters of forecasting functions
are estimated separately for each forecasting step, by minimizing directly the
corresponding forecasting error) and p.282 “Indeed the ‘best’ model on 1-step
forecasts need not dominate at longer horizons”. However, dynamic estimation
is cumbersome and it is not a ‘panacea’, as shown by the same authors. With
regards to the model selection procedure, Clements and Hendry p.281. claim
“we find that the usual criteria based on t- and F-tests are not applicable when
models are to be chosen on the basis of their ability to multi-step forecast”.
As a result, inferences based on ‘traditional’ tests do not straightforwardly
extend to estimation problems involving multi-step ahead forecasts (such as
the signal estimation problem). But even if the right model has been selected
(for example in an artificial simulation context), Clements and Hendry are
warning against careless use p.292 “... a poor forecast could result from the
estimated DGP relative to the false autoregressive model” (in their study, the
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‘false’ model is a pure random-walk model whereas the true DGP is a station-
ary process with an AR-root close to one). The authors show that the relative
performances of ‘true’ and ‘false’ models generally depend on the chosen fore-
cast horizon.

Consequently, the model-based optimization procedure does not ‘match’ the sig-
nal estimation problem for finite samples if the DGP is unknown because one-
step and multi-step ahead forecasting performance§ are generally conflicting

in the presence of misspecification. In fact E[(Y; — Y)?] should be minimized
instead of the mean square error of the residuum in the model equation for X;.
More generally, optimizing with respect to ‘short term’ performances (one-step
ahead forecasts) may be misleading when estimating ‘long term’ components
(like a trend for example).

The approximation of f’t by Yt can be stated in terms of a filter approxi-
mation problem. For that purpose, a suitable ‘distance’ measure is needed.
The DFA bases on the minimization of such a measure. It is shown in chap-
ter 5 that the solution of the corresponding optimization criterion minimizes

E[(Y; — Y+)?] up to an error term which is smallest among a general class of
estimators. Also, the asymptotic distribution of the estimated filter param-
eters can be derived, see chapter 5. Therefore, inferences for the DFA are
not based on one-step ahead performances only (as for the MBA) but implic-
itly account for one- and multi-step ahead performances simultaneously. This
is particularly important when testing for unit-roots for example, see chap-
ters 5 and 7, since unit-roots determine the ‘long-term’ dynamics of a process.

Before introducing the DFA, a well known identification problem is stated
in the following section.

1.3 An Identification Problem

Let
Xe=Ti+Ce+ S+ I (1.6)

Then there are 4N unknowns or unobservable variables for N equations only.
Without additional (strong) assumptions the components on the right hand
side are unidentified. To simplify, suppose one is interested in estimating the
trend T} given Xy, ..., Xn. If it is assumed that the trend evolves according to
a predefined deterministic time pattern (for example a polynomial in t) then
‘ad hoc’ filters can be used (for example a Spencer filter, see Brockwell and
Davis {10] and Kendall and Stuart [57] or a Henderson filter, see Gray and
Thomson [41]). However, components such as the trend are often assumed
to be stochastic. In this case various identifying assumptions exist like for
example:
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e impose perfect dependence of the components so that knowledge of a par-
ticular one determines the others (see Beveridge and Nelson [6] and section
2.2 below);

e impose independence of the components and regularity or smoothness
of trend and seasonal components (see the canonical decomposition in
Hillmer and Tiao [52], Burman [11] and section 2.3 below).

e specify the individual component-models a priori (see the structural mod-
els approach in Grether and al. [70], Harvey [47] and section 2.4 below);

The above methods rely on explicit components (see section 2): the com-
ponents are then estimated by the output of a particular ‘extraction’ filter.
Alternatively, components could be defined implicitly by the output of a filter
satisfying a particular criterion. As an example, the output T; of a Hodrick-
Prescott filter minimizes

N N-1
Y (X =T +2 Y (Ti41 - T) = (T; — Ti-1))? (1.7)
t=1 t=2

where A is given a priori. Larger A lead to increased ‘smoothness’ of the fil-
ter output, see Hodrick and Prescott [54]. The first term penalizes deviations
of T; from the original time series and the second one penalizes ‘roughness’
(as defined by the mean of the squared second order differences). A similar
approach underlies the Henderson filter, see Henderson [51] and section 2.5
below. Many of these methods were introduced by Whittaker [93] and [94]. At
first sight, the identification problem seems to be ‘circumvented’ by implicit
component definitions. However, criteria such as 1.7 are often difficult to in-
terpret. For the Henderson filter, Wallis [92] p.164 argues: “... nor any later
author has asked whether the symmetric Henderson filter produces a good
estimate of the trend, however: for this purpose the trend is simply defined as
the Henderson output”. Moreover, the identification problem is often shifted
towards the more or less arbitrary choice of a particular parameter of the filter
(for example X in 1.7).

The following fig.1.4 plots the Hodrick-Prescott ‘growth component’ T} (solid
line, A := 1600 is a ‘default’ setting for many applications) and the canoni-
cal trend from TRAMO/SEATS (dotted line, see section 2.3) for a particular
time series (UK-car-sales series, see chapter 7).

To summarize, the signal identification problem can be stated as follows

o different particular signal definitions generally lead to different compo-
nents, see for example figs.1.4 and 2.11;

o a priori knowledge is always necessary for a unique identification of the
components in 1.6, due to the ‘large’ number of unobservable variables
(which define the so called ‘structural form’ of the process X;). There-
fore, a ‘universal’ definition of unobservable components of a time series
is impossible. At last, implicit subjective convictions based on individual
experience seem to motivate particular definitions.
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Fig. 1.4. HP- and Tramo/SEATS-Trend

Bell [5] p. 176 argues that “in seasonal adjustment the components are really
artificial constructs presumed useful to estimate; there is no objective ‘truth”’.
In agreement with this comment, neither a new component definition nor a
corresponding symmetric extraction filter are proposed here. Instead, the sig-

nal estimation problem for finite samples (Y ¢) is stressed: givent € {1,...,N}
and Y; the output of a symmetric signal extraction (or ‘smoothing’) filter of

possibly infinite order, find Y, which approximates Y gwen Xq,..,XN.

In the next section, the DFA is briefly introduced. This is a new signal
estimation method for finite samples. The presentation is informal. ‘Technical’
issues are postponed to following chapters.

1.4 The Direct Filter Approach

The following section relies on Wildi [98]. Suppose (the output of) some sym-
metric filter with transfer function I'(w), —7 < w < 7 must be approximated
by (the output of) an asymmetric filter with transfer function I (w). Asseen in
the preceding section, the asymmetry results from the ‘truncation’ of realiza-
tions of infinite length. For notational convenience one ‘hat’ of the estimates

Y; and Y, in section 1.2 is eliminated. Therefore, ¥; becomes Y; (the output

of the symmetric filter) and l:/t becomes Y; (the output of the asymmetric
filter). Assume 2y := {wi|lwr = k2r/N,|k| = 0,...,[N/2]} where [N/2] is
the greatest integer smaller or equal to N/2 and N is the sample size. As-
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sume for simplicity of exposition that X; is stationary (generalizations for
non-stationary integrated processes are provided in chapter 5) and let

2

I (w) i= — (1.8)

N
=— th exp(—iwgt)
2nN —~

denote the periodogram of the input process computed for wp € 2y, see
chapter 4. Then, under suitable regularity assumptions (see chapter 5) the
solution Ip(+) of

[N/2]
min == 3" [F(wk) = P(w)PInx (wi) (1.9)
r k=—[N/2]

generates an output ¥;o which minimizes E[(Y; —Y¥;)?] up to an asymptotically
negligible error term which is smallest possible (for a given class of estima-
tors, see below). This result was first stated in Wildi [96]. The solution of 1.9
is attained within a general class of filters described in chapter 3. An intu-
itive explanation of the preceding statement can be given by considering the
following approximation:

op /2] ) oy N/
5 > IF(wk)—F(wk)|2INX(wk)'z-]—V— > Inav(ws) (1.10)
k=—[N/2] k=—[N/2]
1 & .
=5 2 (¥ - 1oy (1.11)
t=1

where AY, := Y, — Y,. The approximation 1.10 corresponds to a finite sample
convolution and 1.11 corresponds to a finite sample spectral decomposition of
the mean square filter approximation error (see chapter 5). Under suitable
regularity assumptions, 1.11 is a best linear unbiased estimate (BLUE) of the
theoretical mean square error E[(Y; — ¥;)2], see chapter 5. Efficiency of the
DFA then depends on the error term in the approximation 1.10: it is shown
that the expression on the left hand side is a superconsistent estimate of 1.11,
see chapter 5. Therefore, the DFA ‘inherits’ the efficiency property (BLUE)
of 1.11, i.e. Yjo minimizes E[(Y; — ¥;)?] up to an error term which is smallest
possible among the class of linear estimators (of E[(Y; — Y;)?]). Note that in
general Y; and therefore 1.11 and E|[(Y; —Y;)?] are unknown for finite samples
whereas the left hand side of 1.10 can be computed.

In order to derive the consistency and the efficiency as well as the distri-
bution of the estimated filter parameters for a large class of input signals
(including non-stationary integrated processes) technical results involving the
periodogram 1.8 are needed. These are reported in chapter 4 and in the ap-
pendix. It is shown in chapter 5 that 1.9 can be generalized so that the time
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delay of the resulting filter is ‘smaller’. It is then possible to detect ‘turning-
points’ of a particular component earlier, see chapter 8.

The proposed signal estimation method for finite samples is called a direct
filter approach because the coefficients 4 of the resulting asymmetric filter
are computed ‘directly’ from the minimization of (an efficient estimate of) the
mean square error E[(Y; —Y;)2]. In comparison, the filter coefficients of model-
based approaches are derived indirectly from the equivalence between 1.3 and
1.4. They rely on the minimization of the mean square one-step ahead fore-
casting error of the model (whereas the signal estimation problem requires
good one- and multi-step ahead forecasting performances). Moreover, time
constraints (for the resulting asymmetric filter) cannot be ‘build’ into 1.3 for
the MBA so that turning-points of trend components cannot be detected ‘ear-
lier’.

In the following section, a typical application for an efficient finite sam-
ple signal estimation method is provided. Also, the content of the following
chapters is briefly summarized.

1.5 Summary

For economic time series, interesting signals are often seasonally adjusted com-
ponents or trends, see chapter 2 (recall that component definitions depend on
strong a priori assumptions, see section 1.3). An efficient and general signal es-
timation method is needed for these important applications because economic
time series are characterized by randomness (the DGP is not deterministic)
and complex dynamics. Moreover, ‘typical’ users are often interested in signal
estimates for time points near the upper boundary ¢ = N!. Consequently, fil-
ters are heavily asymmetric so that efficient estimation methods are required.

A new method, the DFA, is presented here. The book is organized as
follows:

e In chapter 2, model-based approaches are presented. The aim is not to
provide an exhaustive list of existent methods but to describe established
procedures which are implemented in ‘widely used’ software packages. The
objective is to compare the DFA to established MBA.

e The main concepts needed for the description of filters in the frequency do-
main (such as transfer functions, amplitude functions or phase functions)
are proposed in chapter 3. A new filter class (ZPC-filters) is derived whose
characteristics ‘match’ the signal estimation problem.

e For the DFA, an eminent role is awarded to the periodogram (or to statis-
tics directly related to the periodogram). It ‘collects’ and transforms the

1For assessing the actual state of the ‘business cycle’ for example
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information of the sample Xi,..., Xy into a form suitable for the signal
estimation problem. Therefore, properties of the periodogram and tech-
nical details related to the DFA are analyzed in chapter 4. In particular,
the statistic is analyzed for integrated processes. Stochastic properties of
squared periodogram ordinates are analyzed in the appendix. Both kind
of results are omitted in the ‘traditional’ time series literature and are
needed here for proving theoretical results in chapter 5. An explorative
instrument for assessing possible ‘unit-root misspecification’ of the filter
design for the DFA is proposed also.

The main theoretical results for the DFA are reported in chapter 5: the con-
sistency, the efficiency, the generalization to non-stationary integrated in-
put processes, the generalized conditional optimization (resulting in asym-
metric filters with smaller time delays) and the asymptotic distribution of
the estimated filter parameters (which enables hypothesis testing). In par-
ticular, a generalized unit-root test is proposed which is designed for the
signal estimation problem.

In order to prove the results in chapter 5, regularity assumptions are
needed. One of these assumptions is directly related to finite sample is-
sues (overfitting problem). Therefore, the overfitting problem is analyzed
in chapter 6. Overparameterization and overfitting are distinguished and
new procedures are proposed for ‘tackling’ their various aspects. An es-
timation of the order of the asymmetric filter is presented (which avoids
more specifically overparameterization), founding on the asymptotic dis-
tribution of the parameter estimates. The proposed method does not rely
on ‘traditional’ information criteria, because the DGP of X; is not of im-
mediate concern. However, it is shown in the appendix that ‘traditional’
information criteria (like AIC for example) may be considered as special
cases of the proposed method. Also, new procedures ensuring regularity of
the DFA solution are proposed which solve specific overfitting problems.
The key idea behind these new methods is to modify the original op-
timization criterion such that overfitting becomes ‘measurable’. It is felt
that these ideas may be useful also when modelling the DGP for the MBA.
Empirical results which are based on the simulation of artificial processes
(I(2), 1(1) and stationary processes) and on a ‘real-world’ time series are
presented in chapter 7. The DFA is compared with the MBA with respect
to mean square performances. It is shown that the DFA performs as well
as maximum likelihood estimates for artificial times series. If the DGP
is unknown, as is the case for the ‘real-world’ time series, the DFA out-
performs two established MBA, namely TRAMO/SEATS and CENSUS
X-12-ARIMA (see chapter 2 for a definition). The increased performance
is achieved with respect to various signal definitions (two different trend
signals and a particular seasonal adjustment) both ‘in’ and ‘out of sample’.
It is also suggested that statistics relying on the one-step ahead forecasts,
like ‘traditional’ unit-root tests (augmented Dickey-Fuller and Phillips-
Perron tests) or diagnostic tests (like for example Ljung-Box tests) may
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be misleading for the signal estimation problem if the true DGP is un-
known. Instead, specific instruments derived in chapters 4, 5 and 6 are
used for determining the optimal filter design for the DFA. These instru-
ments, which are based on estimated filter errors (rather than one-step
ahead forecasting errors of the model), indicate smaller integration orders
for the analyzed time series (I(1)- instead of I(2)-processes as ‘proposed’
by the majority of the unit-root tests). A possible explanation for these
differences may be seen in the fact that filter errors implicitly account
for one- and multi-step ahead forecasts simultaneously. A further analy-
sis of the revision errors (filter approximation errors) suggests that the
I(2)-hypothesis should be rejected indeed.

e Finally, an empirical comparison of the DFA and the MBA with respect
to their ability of detecting ‘turning-points’ (of two different trend compo-
nents) is conducted in chapter 8. The MBA is compared with the ‘original’
DFA and with the result of a generalized constrained optimization (whose
filter solution has a smaller time delay). As in the preceding chapter, the
DFA generally outperforms the MBA with respect to the proposed crite-
rion.

In the following chapter 2, well established model-based approaches are pre-
sented. Two of them are used as ‘benchmarks’ in chapters 7 and 8.



2

Model-Based Approaches

2.1 Introduction

Model-based approaches attempt to identify the DGP of the input process
and to estimate its parameters. They provide

1. Definitions of the theoretical components Y;; (identification), where j =
1,...,n and n is the number of components.
2. Estimates Y;; of the components for realizations of infinite length.

3. Estimates Y;; of the components for finite samples.

The general identification problem analyzed in section 1.3 led us to exam-
ine the last estimation problem only. Therefore, we here use the terminology
‘model-based approach’ whenever a method relies on back- or forecasts gen-

erated by a model for approximating ﬁj by Ytj. From this perspective, the
well-known X-11-ARIMA and X-12-ARIMA procedures can be considered as
‘model-based’ although the definitions of the signals at the first stage are ‘im-
plicit’ (not model-based), see for example Dagum [22], Findley et al. [32] and
section 2.5 below.

Most of the approaches to be presented here are based on the following
two decompositions of X;

X4 =T +C+ 8 +1; (2.1)
X, = T,C,S.1, (2.2)

where Ty, Cy, S; and I; are the ‘trend’, the ‘cyclical’, the ‘seasonal’ and the
‘irregular’ components respectively (see Nerlove, Grether and Carvalho [70]
for an interpretation of these components). The number of four components is
not to be seen as a limitation. More (or less) components may be considered
too. The multiplicative decomposition (2.2) can be justified by the observation
that seasonal or irregular variations often grow with the ‘level’ Ty of a series.
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Methods based on the multiplicative decomposition can be defined explicitly
(see section 2.5) or they can be derived from the additive representation (2.1)
by using a preliminary log-transform of X;. Besides the additive and the mul-
tiplicative decompositions, some methods allow for additional representations
of X, see for example section 2.5.

Additive or multiplicative component models are defined by supplying spe-
cific stochastic assumptions. Model-based approaches generally differ with re-
spect to these assumptions. For the MBA in the following section, components
are assumed to be dependent.

2.2 The Beveridge-Nelson Decomposition

The Beveridge-Nelson decomposition is a so called ‘ARIMA’-model-based-

approach. Let
Xt = Tt + Ct

where it is assumed that

Xt = Xt—l + M + E(B)Gt (23)

ZZ’ akBk
where Z(B) = Y0 & BF = =£=0_""— {5 a stable ARMA operator (e =
zjzo ,Bj By )
Bo = 1), see Beveridge and Nelson [6]. Consider a forecast Xitx| X3, Xi-1, ..
of Xiy for k ‘large’:

k k+1

KXivk = ku+ X + ij € + z&;' €1+ ...
j=1 j=2
oo

~ kp+ X+ Z§j €+ Zﬁj €t—1 7 ...
=1 j=2

= kp+T;

where |Z;‘;1 §k~ < 32721 l€k| < oo because of the ARMA-structure (which

induces an exponential decay of the coefficients). The slope of the forecast is
given by p and its ‘level’ is defined by T; which is a stochastic process. In fact

o0
T-Ta=p+ | & e (2.4)
j:O

so that T; is a random walk with drift u. Beveridge and Nelson call T; the
permanent component: “the value the original series would have if it were on
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the long-run path (as defined by the long run forecast) in the current time
period. The permanent component is then the long-run forecast of the series
adjusted for its mean rate of change...”, see [6], p.156.

Remarks

e The permanent component can be interpreted as a ‘trend’. From (2.4) the
successive trend increments increase by p+ (3 po o k) €. If [Speo &kl > 1
then the trend is more ‘erratic’ than the original series. Figure 2.1 il-
lustrates the latter point : the solid line corresponds to a seasonally ad-
justed series (UK-car-sales series, see chapter 7) whereas the dotted line
corresponds to the Beveridge-Nelson ‘trend’. The permanent component
T; is estimated using the software-package ‘RATS’ (see below). AR- and
MA-model orders were set to p = 0 and ¢ = 1 so that X; — X;_ is
a MA(1) process. The estimated positive lag coefficient § then implies
E;io & =146 > 1in (2.4). Note that this phenomenon (‘erratic’ trend)
has lead to criticism, see for example Metz [66] p.290. In fact, for many
applications ‘smooth’ components are of interest (because it is felt that
‘short term’ variations should be ‘smoothed out’).

e As shown in equation 10 in Beveridge and Nelson [6] the ‘cyclical’ com-
ponent C; := X; — T is stationary and its innovation process is given
by €;. Therefore, trend and cyclical components are dependent since they
share the same innovation ¢ : the ‘shocks’ which generate the business
cycle are the same as those which generate the growth process. Beveridge
and Nelson interpret C; as “a stationary process which represents the fore-
castable momentum present at each time period but which is expected to
be dissipated as the series tends to its permanent level”, see [6], p.158.

¢ Finite sample signal extraction problems do not exist here because T} can
be computed without knowledge of ‘future’ observations Xyi1, XN 42, .-
as can be seen from (2.4).

An algorithm for computing the Beveridge-Nelson-decomposition has been
proposed in Newbold [71]. This algorithm has been implemented in RATS.
The corresponding procedure is called ‘bndecomp.src’. The text-file can be
downloaded from www.estima.com. The time series in figure 2.1 has been
computed accordingly. Note that (2.3) does not allow for a seasonal compo-
nent. Therefore, the input series has been previously seasonally adjusted. The
corresponding seasonal adjustment procedure is presented in the following
section.

2.3 The Canonical Decomposition

The following model-based approach is based on ARIMA-models too. How-
ever, the identifying assumptions for the components are ‘at the opposite’ of
those in the preceding section (recall section 1.3). Indeed, it is assumed that Ty,
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Fig. 2.1. UK-car sales (solid) and Permanent Component (dotted)

S; and I; are independent processes and that T; and S; are ‘smooth’. Hillmer
and Tiao [53] argue “To perform seasonal adjustment of the data, an arbiirary
choice must be made. Considering that the seasonal and trend components
should be slowly evolving, it seems reasonable to extract as much white noise
as possible from the seasonal and trend components... Thus we seek to maxi-
mize the innovation variance of the noise component”. The “slowly evolving”
(smooth) trend and seasonal components or, more precisely, the maximization
of the variance of the noise component characterizes the canonical decompo-
sition.

Once an ARIMA-model for the DGP of X; has been selected and (param-
eters) estimated, models for the individual DGP’s of the components must be
defined such that

o the resulting model is admissible i.e. the components sum up to X; and
are independent and
e the components may be interpreted as ‘trend’, ‘seasonal’ or ‘irregular’.

Together with the above ‘smoothness’ property (see Box, Hillmer and Tiao
[37] and Pierce [21]) these assumptions uniquely define the components. A
good ‘initiation’ to the method is given in Maravall and Pierce [65] who con-
sider a very simple ARIMA-process generating trend, seasonal and irregular
variations. This is described in the following section.

2.3.1 An Illustrative Example

Let
1-B)X;=(1-B)(1+B)X; =¢ (2.5)



