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An error does not become truth by
reason of multiplied propagation, nor
does truth become error because no-
body sees it.

M.K. Gandhi



Preface: Idiosyncratic
and Collective Extreme Risks

Modern western societies have a paradoxical relationship with risks. On the
one hand, there is the utopian quest for a zero-risk society [120]. On the other
hand, human activities may increase risks of all kinds, from collaterals of new
technologies to global impacts on the planet. The characteristic multiplication
of major risks in modern society and its reflexive impact on its development
is at the core of the concept of the “Risk Society” [47]. Correlatively, our per-
ception of risk has evolved so that catastrophic events (earthquakes, floods,
droughts, storms, hurricanes, volcanic eruptions, and so on) are no more sys-
tematically perceived as unfair outcomes of an implacable destiny. Catastro-
phes may also result from our own technological developments whose com-
plexity may engender major industrial disasters such as Bhopal, Chernobyl,
AZT, as well as irreversible global changes such as global warming leading to
climatic disruptions or epidemics from new bacterial and viral mutations. The
proliferation of new sources of risks imposes new responsibilities concerning
their determination, understanding, and management. Government organiza-
tions as well as private institutions such as industrial companies, insurance
companies, and banks which have to face such risks, in their role of regulators
or of risk bearers, must ensure that the consequences of extreme risks are
supportable without endangering the institutions in charge of bearing these
risks.

In the financial sector, crashes probably represent the most striking events
among all possible extreme phenomena, with an impact and frequency that
has been increasing in the last two decades [450]. Consider the worldwide
crash in October 1987 which evaporated more than one thousand billion dol-
lars in a few days or the more recent collapse of the internet bubble in which
more than one-third of the world capitalization of 1999 disappeared after
March 2000. Finance and stock markets are based on the fluid convertibility
of stocks into money and vice versa. Thus, to work well, money is requested
to be a reliable standard of value, that is, an effective store of value, hence the
concerns with the negative impacts of inflation. Similarly, investors look at the
various financial assets as carriers of value, like money, but with additional
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return potentials (accompanied with downturn risks). But for this view to
hold so as to promote economic development, fluctuations in values need to
be tamed to minimize the risk of losing a lifetime of savings, or to avoid
the risks of losing the investment potential of companies, or even to prevent
economic and social recessions in whole countries (consider the situation of
California after 2002 with a budget gap representing more than one-fourth of
the entire State budget resulting essentially from the losses of financial and
tax incomes following the collapse of the internet bubble). It is thus highly
desirable to have the tools for monitoring, understanding, and limiting the ex-
treme risks of financial markets. Fully aware of these problems, the worldwide
banking organizations have promoted a series of advices and norms, known as
the recommendations of the Basle committee [41, 42]. The Basle committee
has proposed models for the internal management of risks and the imposi-
tion of minimum margin requirements commensurate with the risk exposures.
However, some criticisms [117, 467] have found these recommendations to be
ill-adapted or even destabilizing. This controversy underlines the importance
of a better understanding of extreme risks, of their consequences and ways to
prevent or at least minimize them.

In our opinion, tackling this challenging problem requires to decompose
it into two main parts. First, it is essential to be able to accurately quan-
tify extreme risks. This calls for the development of novel statistical tools
going significantly beyond the Gaussian paradigm which underpins the stan-
dard framework of classical financial theory inherited from Bachelier [26],
Markowitz [347], and Black and Scholes [60] among others. Second, the ex-
istence of extreme risks must be considered in the context of the practice
of risk management itself, which leads to ask whether extreme risks can be
diversified away similarly to standard risks according to the mean-variance
approach. If the answer to this question is negative as can be surmized for nu-
merous concrete empirical evidences, it is necessary to develop new concepts
and tools for the construction of portfolios with minimum (but unavoidable)
exposition of extreme risks. One can think of mixing equities and derivatives,
as long as derivatives themselves do not add an extreme risk component and
can really provide an insurance against extreme moves, which has been far
from true in recent dramatic instances such as the crash of October 1987.
Another approach could involve mutualism as in insurance.

Risk management, and to the same extent portfolio management, thus re-
quires a precise and rigorous analysis of the distribution of the returns of the
portfolio of risks. Taking into account the moderate sizes of standard portfo-
lios (from tens to thousands of assets typically) and the non-Gaussian nature
of the distributions of the returns of assets constituting the portfolios, the
distributions of the returns of typical portfolios are far from Gaussian, in con-
tradiction with the expectation from a naive use of the central limit theorem
(see for instance Chap. 2 of [451] and other chapters for a discussion of the
deviations from the central limit theorem). This breakdown of universality
then requires a careful estimation of the specific case-dependent distribution
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of the returns of a given portfolio. This can be done directly using the time
series of the returns of the portfolio for a given capital allocation. A more con-
structive approach consists in estimating the joint distribution of the returns
of all assets constituting the portfolio. The first approach is much simpler and
rapid to implement since it requires solely the estimation of a monovariate
distribution. However, it lacks generality and power by neglecting the observ-
able information available from the basket of all returns of the assets. Only
the multivariate distribution of the returns of the assets embodies the gen-
eral information of all risk components and their dependence across assets.
However, the two approaches become equivalent in the following sense: the
knowledge of the distribution of the returns for all possible portfolios for all
possible allocations of capital between assets is equivalent to the knowledge
of the multivariate distributions of the asset returns. All things considered,
the second approach appears preferable on a general basis and is the method
mobilizing the largest efforts both in academia and in the private sector.

However, the frontal attack aiming at the determination of the multivari-
ate distribution of the asset returns is a challenging task and, in our opinion,
much less instructive and useful than the separate studies of the marginal
distributions of the asset returns on the one hand and the dependence struc-
ture of these assets on the other hand. In this book, we emphasize this second
approach, with the objective of characterizing as faithfully as possible the di-
verse origins of risks: the risks stemming from each individual asset and the
risks having a collective origin. This requires to determine (i) the distributions
of returns at different time scales, or more generally, the stochastic process
underlying the asset price dynamics, and (ii) the nature and properties of
dependences between the different assets.

The present book offers an original and systematic treatment of these two
domains, focusing mainly on the concepts and tools that remain valid for
large and extreme price moves. Its originality lies in detailed and thorough
presentations of the state of the art on (i) the different distributions of finan-
cial returns for various applications (VaR, stress testing), and (ii) the most
important and useful measures of dependences, both unconditional and con-
ditional and a study of the impact of conditioning on the size of large moves
on the measure of extreme dependences. A large emphasis is thus put on the
theory of copulas, their empirical testing and calibration, as they offer intrin-
sic and complete measures of dependences. Many of the results presented here
are novel and have not been published or have been recently obtained by the
authors or their colleagues. We would like to acknowledge, in particular, the
fruitful and inspiring discussions and collaborations with J.V. Andersen, U.
Frisch, J.-P. Laurent, J.-F. Muzy, and V.F. Pisarenko.

Chapter 1 describes a general framework to develop “coherent measures” of
risks. It also addresses the origins of risks and of dependence between assets in
financial markets, from the CAPM (capital asset pricing model) generalized to
the non-Gaussian case with heterogeneous agents, the APT (arbitrage pricing
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theory), the factor models to the complex system view suggesting an emergent
nature for the risk-return trade-off.

Chapter 2 addresses the problem of the precise estimation of the probabil-
ity of extreme events, based on a description of the distribution of asset returns
endowed with heavy tails. The challenge is thus to specify accurately these
heavy tails, which are characterized by poor sampling (large events are rare).
A major difficulty is to neither underestimate (Gaussian error) or overestimate
(heavy tail hubris) the extreme events. The quest for a precise quantification
opens the door to model errors, which can be partially circumvented by using
several families of distributions whose detailed comparisons allow one to dis-
cern the sources of uncertainty and errors. Chapter 2 thus discusses several
classes of heavy tailed distributions: regularly varying distributions (i.e., with
asymptotic power law tails), stretched-exponential distributions (also known
as Weibull or subexponentials) as well as log-Weibull distributions which ex-
trapolate smoothly between these different families.

The second element of the construction of multivariate distributions of as-
set returns, addressed in Chaps. 3–6, is to quantify the dependence structure
of the asset returns. Indeed, large risks are not due solely to the heavy tails of
the distribution of returns of individual assets but may result from a collective
behavior. This collective behavior can be completely described by mathemat-
ical objects called copulas, introduced in Chap. 3, which fully embody the
dependence between asset returns.

Chapter 4 describes synthetic measures of dependences, contrasting and
linking them with the concept of copulas. It also presents an original estima-
tion method of the coefficient of tail dependence, defined, roughly speaking, as
the probability for an asset to lose a large amount knowing that another asset
or the market has also dropped significantly. This tail dependence is of great
interest because it addresses in a straightforward way the fundamental ques-
tion whether extreme risks can be diversified away or not by aggregation in
portfolios. Either the tail dependence coefficient is zero and the extreme losses
occur asymptotically independently, which opens the possibility of diversify-
ing them away. Alternatively, the tail dependence coefficient is non-zero and
extreme losses are fundamentally dependent and it is impossible to completely
remove extreme risks. The only remaining strategy is to develop portfolios that
minimize the collective extreme risks, thus generalizing the mean-variance to
a mean-extreme theory [332, 336, 333].

Chapter 5 presents the main methods for estimating copulas of financial
assets. It shows that the empirical determination of a copula is quite delicate
with significant risks of model errors, especially for extreme events. Specific
studies of the extreme dependence are thus required.

Chapter 6 presents a general and thorough discussion of different mea-
sures of conditional dependences (where the condition can be on the size(s)
of one or both returns for two assets). Chapter 6 thus sheds new light on the
variations of the strength of dependence between assets as a function of the
sizes of the analyzed events. As a startling concrete application of conditional
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dependences, the phenomenon of contagion during financial crises is discussed
in detail.

Chapter 7 presents a synthesis of the six previous chapters and then offers
suggestions for future work on dependence and risk analysis, including time-
varying measures of extreme events, endogeneity versus exogeneity, regime
switching, time-varying lagged dependence and so on.

This book has been written with the ambition to be useful to (a) the
student looking for a general and in-depth introduction to the field, (b) fi-
nancial engineers, economists, econometricians, actuarial professionals and re-
searchers, and mathematicians looking for a synoptic view comparing the pros
and cons of different modeling strategies, and (c) quantitative practitioners
for the insights offered on the subtleties and many dimensional components of
both risk and dependence. The content of this book will also be useful to the
broader scientific community in the natural sciences, interested in quantifying
the complexity of many physical, geophysical, biophysical etc. processes, with
a mounting emphasis on the role and importance of extreme phenomena and
their non-standard dependences.

Lyon, Nice and Los Angeles Yannick Malevergne
August 2005 Didier Sornette
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1

On the Origin of Risks and Extremes

1.1 The Multidimensional Nature of Risk
and Dependence

In finance, the fundamental variable is the return that an investor accrues from
his investment in a basket of assets over a certain time period. In general, an
investor is interested in maximizing his gains while minimizing uncertainties
(“risks”) on the expected value of the returns on his investment, at possibly
multiple time scales – depending upon the frequency with which the manager
monitors the portfolio – and time periods – depending upon the investment
horizon. From a general standpoint, the return-risk pair is the unavoidable du-
ality underlying all human activities. The relationship between return and risk
constitutes one of the most important unresolved questions in finance. This
question permeates practically all financial engineering applications, and in
particular the selection of investment portfolios. There is a general consensus
among academic researchers that risk and return should be related, but the
exact quantitative specification is still beyond our comprehension [414].

Uncertainties come in several forms, which we cite in the order of increasing
aversion for most human beings:

(i) stochastic occurrences of events quantified by known probabilities;
(ii) stochastic occurrences of events with poorly quantified or unknown prob-

abilities;
(iii) random events that are “surprises,” i.e., that were previously thought

to be impossible or unthinkable until they happened and revealed their
existence.

Here we address the first form, using the mathematical tools of probability
theory.

Within this class of uncertainties, one must still distinguish several
branches. In the simplest traditional theory exemplified by Markowitz [347],
the uncertainties underlying a given set of positions (portfolio) result from
the interplay of two components: risk and dependence.
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(a) Risk is embedded in the amplitude of the fluctuations of the returns. its
simplest traditional measure is the standard deviation (square-root of the
variance).

(b) The dependence between the different assets of a portfolio of positions
is traditionally quantified by the correlations between the returns of all
pairs of assets.

Thus, in their most basic incarnations, both risk and dependence are thought
of, respectively, as one-dimensional quantities: the standard deviation of
the distribution of returns of a given asset and the correlation coefficient
of these returns with those of another asset of reference (the “market” for
instance). The standard deviation (or volatility) of portfolio returns provides
the simplest way to quantify its fluctuations and is at the basis of Markowitz’s
portfolio selection theory [347]. However, the standard deviation of a portfolio
offers only a limited quantification of incurred risks (seen as the statistical fluc-
tuations of the realized return around its expected – or anticipated – value).
This is because the empirical distributions of returns have “fat tails” (see
Chap. 2 and references therein), a phenomenon associated with the occur-
rence of non-typical realizations of the returns. In addition, the dependences
between assets are only imperfectly accounted for by the covariance matrix
[309].

The last few decades have seen two important extensions.

• First, it has become clear, as synthesized in Chap. 2, that the standard
deviation offers only a reductive view of the genuine full set of risks em-
bedded in the distribution of returns of a given asset. As distributions of
returns are in general far from Gaussian laws, one needs more than one
centered moment (the variance) to characterize them. In principle, an in-
finite set of centered moments is required to faithfully characterize the
potential for small all the way to extreme risks because, in general, large
risks cannot be predicted from the knowledge of small risks quantified by
the standard deviation. Alternatively, the full space of risks needs to be
characterized by the full distribution function. It may also be that the dis-
tributions are so heavy-tailed that moments do not exist beyond a finite
order, which is the realm of asymptotic power law tails, of which the stable
Lévy laws constitute an extreme class. The Value-at-Risk (VaR) [257] and
many other measures of risks [19, 20, 73, 447, 453] have been developed to
account for the larger moves allowed by non-Gaussian distributions and
non-linear correlations.

• Second and more recently, the correlation coefficient (and its associated
covariance) has been shown to only be a partial measure of the full de-
pendence structure between assets. Similarly to risks, a full understanding
of the dependence between two or more assets requires, in principle, an
infinite number of quantifiers or a complete dependence function such as
the copulas, defined in Chap. 3.
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These two fundamental extensions from one-dimensional measures of risk
and dependence to infinitely dimensional measures of risk and dependence
constitute the core of this book. Chapter 2 reviews our present knowledge
and the open challenges in the characterization of distribution of returns.
Chapter 3 introduces the notion of copulas which are applied later in Chap. 5
to financial dependences. Chapter 4 describes the main properties of the most
important and varied measures of dependence, and underlines their connec-
tions with copulas. Finally, Chap. 6 expands on the best methods to capture
the dependence between extreme returns.

Understanding the risks of a portfolio of N assets involves the characteriza-
tion of both the marginal distributions of asset returns and their dependence.
In principle, this requires the knowledge of the full (time-dependent) mul-
tivariate distribution of returns, which is the joint probability of any given
realization of the N asset returns at a given time. This remark entails the
two major problems of portfolio theory: (1) to determine the multivariate
distribution function of asset returns; (2) to derive from it useful measures
of portfolio risks and use them to analyze and optimize the performance of
the portfolios. There is a large literature on multivariate distributions and
multivariate statistical analysis [363, 468, 282]. This literature includes:

• the use of the multivariate normal distribution on density estimation [428];
• the corresponding random vectors treated with matrix algebra, and thus

on matrix methods and multivariate statistical analysis [173, 371];
• the robust determination of multivariate means and covariances [297, 298];
• the use of multivariate linear regression and factor models [160, 161];
• principal component analysis, with excursions in clustering and classifica-

tion techniques [276, 254];
• methods for data analysis in cases with missing observations [133, 310];
• detecting outliers [249, 250];
• bootstrap methods and handling of multicollinearity [461];
• methods of estimation using the plug-in principles and maximum likeli-

hood [144];
• hypothesis testing using likelihood ratio tests and permutation tests [398];
• discrete multivariate distributions [253];
• computer-aided geometric design, geometric modeling, geodesic applica-

tions, and image analysis [464, 105, 426];
• radial basis functions [86], scattered data on spheres, and shift-invariant

spaces [139, 433];
• non-uniform spline wavelets [139];
• scalable algorithms in computer graphics [76];
• reverse engineering [139], and so on.

The growing literature on (1) non-stationary processes [85, 210, 222, 361]
and (2) regime-switching [172, 180, 215, 269] is not covered here. Nor do
we address the more complex issues of embedding financial modeling within
economics and social sciences. We do not cover either the consequences for risk
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assessment coming from the important emerging field of behavioral finance,
with its exploration of the impact on decision-making of imperfect bounded
subjective probability perceptions [36, 206, 437, 439, 474]. Our book thus uses
objective probabilities which can be estimated (with quantifiable errors) from
suitable analysis of available data.

1.2 How to Rank Risks Coherently?

The question on how to rank risks, so as to make optimal decisions, is recur-
rent in finance (and in many other fields) but has not yet received a general
solution.

Since the middle of the twentieth century, several paths have been ex-
plored. The pioneering work by Von Neuman and Morgenstern [482] has given
birth to the mathematical definition of the expected utility function, which
provides interesting insights on the behavior of a rational economic agent
and has formalized the concept of risk aversion. Based upon the properties
of the utility function, Rothschild and Stiglitz [419, 420] have attempted to
define the notion of increasing risks. But, as revealed by Allais [4, 5], em-
pirical investigations have proven that the postulates chosen by Von Neuman
and Morgenstern are actually often violated by humans. Many generalizations
have been proposed for curing the so-called Allais’ Paradox, but until now,
no generally accepted procedure has been found.

Recently, a theory due to Artzner et al. [19, 20] and its generalization by
Föllmer and Schied [174, 175] have appeared. Based on a series of postulates
that are quite natural, this theory allows one to build coherent (resp., convex)
measures of risks that provide tools to compare and rank risks [383]. In fact,
if this theory seems well-adapted to the assessment of the needed economic
capital, that is, of the fraction of capital a company must keep as risk-free
assets in order to face its commitments and thus avoid ruin, it seems less
natural for the purpose of quantifying the fluctuations of the asset returns
or equivalently the deviation from a predetermined objective. In fact, as will
be exposed in this section, it turns out that the two approaches consisting in
assessing the risk in terms of economic capital on the one hand, and in terms
of deviations from an objective on the other hand, are actually the two sides
of the same coin as recently shown in [407, 408].

1.2.1 Coherent Measures of Risks

According to Artzner et al. [19, 20], the risk involved in the variations of the
values of a market position is measured by the amount of capital invested
in a risk-free asset, such that the market position can be prolonged in the
future. In other words, the potential losses should not endanger the future
actions of the fund manager of the company, or more generally, of the person
or structure which underwrites the position. In this sense, a risk measure
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constitutes for Artzner et al. a measure of economic capital. The risk measure
ρ can be either positive, if the risk-free capital must be increased to guarantee
the risky position, or negative, if the risk-free capital can be reduced without
invalidating it.

A risk measure is said to be coherent in the sense of Artzner et al. [19, 20]
if it obeys the four properties or axioms that we now list. Let us call G the
space of risks. If the space Ω of all possible states of nature is finite, G is
isomorphic to RN and a risky position X is nothing but a vector in RN. A risk
measure ρ is then a map from RN onto R. A generalization to other spaces G
of risk has been proposed by Delbaen [123].

Let us consider a risky position with terminal value X and a capital α
invested in the risk-free asset at the beginning of the time period. At the end
of the time period, α becomes α · (1 + µ0), where µ0 is the risk-free interest
rate. Then,

Axiom 1 (Translational Invariance)

∀X ∈ G and ∀α ∈ R, ρ(X + α · (1 + µ0)) = ρ(X) − α . (1.1)

This simply means that an investment of amount α in the risk-free asset
decreases the risk by the same amount α. In particular, for any risky position
X, ρ(X+ρ(X)·(1+r)) = 0, which expresses that investing an amount ρ(X) in
the risk-free asset enables one to exactly make up for the risk of the position
X.

Let us now consider two risky investments X1 and X2, corresponding to
the positions of two traders of an investment house. It is important for the
supervisor that the aggregated risk of all traders be less than the sum of risks
incurred by all traders. In particular, the risk associated with the position
(X1 + X2) should be smaller than or equal to the sum of the separated risks
associated with the two positions X1 and X2.

Axiom 2 (Sub-additivity)

∀(X1, X2) ∈ G × G, ρ(X1 + X2) ≤ ρ(X1) + ρ(X2) . (1.2)

The condition of sub-additivity encourages a portfolio managers to aggregate
her different positions by diversification to minimize her overall risk. This
axiom is probably the most debated among the four axioms underlying the
theory of coherent measures of risk (see [131] and references therein). As an
example, the VaR is well known to lack sub-additivity. At the same time, VaR
is comonotonically additive, which means that the VaR of two comonotonic
assets equals the sum of the VaR of each individual asset. But, since the
comonotonicity represents the strongest kind of dependence (see Chap. 3),
it is particularly disturbing to imagine that one can find situations where a
portfolio made of two comonotonic assets is less risky than a portfolio with
assets whose marginal risks are the same as in the previous situation but with
a weaker dependence. Here is the rub with sub-additivity.
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Axiom 3 (Positive Homogeneity)

∀X ∈ G and ∀λ ≥ 0, ρ(λ · X) = λ · ρ(X) . (1.3)

This third axiom stresses the importance of homogeneity. Indeed, it means
that the risk associated with a given position increases with its size, here
proportionally with it. Again, this axiom is controversial. Obviously, one can
assert that the risk associated with the position 2 · X is naturally twice as
large as the risk of X. This is true as long as we can consider that a large
position can be cleared as easily as a smaller one. However, it is not realistic
because of the limited liquidity of real markets; a large position in a given
asset is more risky than the sum of the risks associated with the many smaller
positions which add up to the large position.

Eventually, if it is true that, for all possible states of nature, the risk of X
leads to a loss larger than that of Y (i.e., all components of the vector X in
RN are always less than or equal to those of the vector Y ), the risk measure
ρ(X) must be larger than or equal to ρ(Y ) :

Axiom 4 (Monotony)

∀X,Y ∈ G such that X ≤ Y, ρ(X) ≥ ρ(Y ) . (1.4)

These four axioms define the coherent measures of risks, which admit the
following general representation:

ρ(X) = sup
P∈P

EP

[ −X

1 + µ0

]
, (1.5)

where P denotes a family of probability measures. Thus, any coherent measure
of risk appears as the expectation of the maximum loss over a given set of
scenarios (the different probability measures P ∈ P). It is then obvious that
the larger the set of scenarios, the larger the value of ρ(X) and thus, the more
conservative the risk measure.

It is particularly interesting that expression (1.5) is very similar to the
result obtained in the theory of utility with non-additive probabilities [202,
203]. Indeed, in such a case, the utility of position X is given by

U(X) = inf
P∈P

EP [u(X)] , (1.6)

where u(·) is a usual utility function.
When the coherent risk measure is invariant in law and comonotonically

additive, an alternative representation holds in terms of the spectral measure
of risk [285, 471]

ρ(X) = p

∫ 1

0

VaRα(X) dF (α) + (1 − p)VaR1(X) , (1.7)
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where F is a continuous convex distribution function on [0, 1], p is any real
in [0, 1] and VaRα is the Value-at-Risk defined in (3.85) page 125. Therefore,
most coherent measures of risk appear as a convex sum of VaRα (a non-
coherent risk measure) at different probability levels. The weighting function
F can be interpreted as a distortion of the objective probabilities, as under-
lined in the non-expected utility context [431, 495].

Coherent measures of risk can be generalized to define the so-called con-
vex measures of risk by replacing the controversial axioms 2–3, by a single
axiom of convexity of the risk measure [174, 175]. In the case where the risk
measure is still positively homogeneous, this requirement is equivalent to the
sub-additivity, but it becomes less restrictive when Axiom 3 is discarded.
Then, one obtains the following representation of the convex risk measures:

ρ(X) = sup
P∈M

EP

[ −X

1 + µ0
− α (P)

]
, (1.8)

where M is the set of all probability measures on (Ω,F), F denotes a σ-
algebra on the state space Ω. More generally, M is the set of all finitely
additive and non-negative set functions P on F satisfying P(Ω) = 1 and the
functional

α (P) = sup
X∈G|ρ(X)≤0

EP

[ −X

1 + µ0

]
(1.9)

is a penalty function that fully characterizes the convex measure of risk. In
the case of a coherent risk measure, the set P (in (1.5)) is in fact the class of
set functions P in M such that the penalty function vanishes: α(P) = 0.

Another alternative leads one to replace Axiom 4 by the following:

Axiom 5 (Expectation-Boundedness)

∀X ∈ G ρ(X) ≥ E [−X]
1 + µ0

, (1.10)

where the equality holds if and only if X is certain.1 Then, together with
axioms 1–3, it allows one to define the expectation-bounded risk measures
[407]. They are particularly interesting insofar as they enable one to capture
the inherent relationship existing between the assessment of risk in terms of
economic capital and the measure of risk in terms of deviations from a target
objective, as we shall see hereafter.

1.2.2 Consistent Measures of Risks and Deviation Measures

We now present a slightly different approach, which we think offers a suitable
complement to coherent (and/or convex) risk measures for financial invest-
ments, and in particular for portfolio risk assessments. These measures are
1 We say that X is certain if X(ω) = a, for some a ∈ R, for all ω ∈ Ω, such that

P(ω) �= 0, where P denotes a probability measure on (Ω,F) and F is a σ-algebra
so that (Ω,F , P) is a usual probability space.
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called “consistent measures of risks” in [333] and “general deviation measures”
in [407]. As before, we consider the future value of a risky position denoted
by X, and we call G the space of risks.

Let us first require that the risk measure ρ̃(·), which is a functional on G,
always remains positive:

Axiom 6 (Positivity)

∀X ∈ G , ρ̃(X) ≥ 0 , (1.11)

where the equality holds if and only if X is certain. Let us now add to this
position a given amount α invested in the risk-free asset whose return is µ0

(with therefore no randomness in its price trajectory) and define the future
wealth of the new position Y = X + α(1 + µ0). Since µ0 is non-random,
the fluctuations of X and Y are the same. Thus, it is desirable that ρ̃ en-
joys a property of translational invariance, whatever X and the non-random
coefficient α may be:

∀X ∈ G, ∀α ∈ R , ρ̃(X + (1 + µ0) · α) = ρ̃(X) . (1.12)

This relation is obviously true for all µ0 and α; therefore, we set

Axiom 7 (Translational Invariance)

∀X ∈ G, ∀κ ∈ R , ρ̃(X + κ) = ρ̃(X) . (1.13)

We also require that the risk measure increases with the quantity of assets
held in the portfolio. This assumption reads

∀X ∈ G, ∀λ ∈ R+ , ρ̃(λ · X) = f(λ) · ρ̃(X) , (1.14)

where the function f : R+ −→ R+ is increasing and convex to account for
liquidity risk, as previously discussed. In fact, it is straightforward to show2

that the only functions satisfying this requirement are the functions fζ(λ) =
λζ with ζ ≥ 1, so that Axiom 3 can be reformulated in terms of positive
homogeneity of degree ζ:

Axiom 8 (Positive Homogeneity)

∀X ∈ G, ∀λ ∈ R+, ρ̃(λ · X) = λζ · ρ̃(X). (1.15)

Note that the case of liquid markets is recovered by ζ = 1 for which the risk is
directly proportional to the size of the position, as in the case of the coherent
risk measures.

These axioms, which define the so-called consistent measures of risk [333]
can easily be extended to the risk measures associated with the return on the
2 Using the trick ρ̃(λ1λ2·X) = f(λ1)·ρ̃(λ2·X) = f(λ1)·f(λ2)·ρ̃(X) = f(λ1·λ2)·ρ̃(X)

leading to f(λ1 · λ2) = f(λ1) · f(λ2). The unique increasing convex solution of
this functional equation is fζ(λ) = λζ with ζ ≥ 1.
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risky position. Indeed, a one-period return is nothing but the variation of the
value of the position divided by its initial value X0. One can thus easily check
that the risk defined on the risky position is [X0]ζ times the risk defined on
the return distribution. In the following, we will only consider the risk defined
on the return distribution and, to simplify the notations, the symbol X will be
used to denote both the asset price and its return in their respective context
without ambiguity.

Now, restricting to the case of a perfectly liquid market (ζ = 1) and adding
a sub-additivity assumption

Axiom 9 (Sub-additivity)

∀(X,Y ) ∈ G × G , ρ̃(X + Y ) ≤ ρ̃(X) + ρ̃(X) , (1.16)

one obtains the so-called general deviation measures [407]. Again, this axiom is
open to controversy and its main raison d’être is to ensure the well-posedness
of optimization problems (such as minimizing portfolio risks). It could be
weakened along the lines used previously to derive the convex measures of
risk from the coherent measures of risk.

One can easily check that the deviation measures defined in (1.16) cor-
respond one-to-one to the expectation-bounded measures of risk defined in
(1.10) through the relation

ρ(X) = ρ̃(X) +
E [−X]
1 + µ0

⇐⇒ ρ̃(X) = ρ (X + E [−X]) . (1.17)

It follows straightforwardly that minimizing the risk of a portfolio (measured
either by ρ or by ρ̃) under constraints on the expected return is equivalent,
as long as the constraints on the expected return are active. Indeed, in such a
case, searching for the minimum of ρ̃ or of ρ̃(X) + E[−X]

1+µ0
is the same problem

since the value of the expected return is fixed by the constraints.
Additionally, it can be shown that the expectation-bounded measure of

risk ρ defined by (1.17) is coherent if (and only if) the deviation measure ρ̃
satisfies [407]

∀X ∈ G , ρ̃(X) ≤ E [X] − inf X . (1.18)

The general representation of the deviation measures satisfying this restric-
tion can be easily derived from the representation of coherent risk measures.
When such a requirement is not fulfilled, one can still have the following rep-
resentation:3

3 Strictly speaking, this representation only holds for lower semicontinous deviation
measures, i.e., deviation measures such that the sets {X|ρ̃(X) ≤ ε} are closed in
L2(Ω), for all ε > 0. This condition is fulfilled by most of the deviation measures
of common use: the standard deviation, the semi-standard deviation, the absolute
deviation, and so on.
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ρ̃(X) = sup
Y ∈Y

E [Y · (E [X] − X)] = sup
Y ∈Y

Cov(−X,Y ) , (1.19)

where Y is a closed and convex subset of L2(Ω) such that

1. 1 ∈ Y,
2. ∀Y ∈ Y, E [Y ] = 1,
3. ∀X ∈ L2(Ω), ∃Y ∈ Y, such that E [Y · X] < E [X].

When the random variables in Y are all positive, they can be interpreted as
density functions relative to some reference probability measure P0 on (Ω,F)
(the objective probability measure). Thus, the term E [Y · X] is nothing but
the expectation of X under the probability measure P, such that its Radon
density dP

dP0
= Y . Therefore, one obtains a deviation measure associated with

a coherent measure of risk.
These derivations show that deviation measures of risk on the one hand and

coherent (or convex/expectation-bounded) measures of risk on the other hand
are inextricably entangled. In fact, they are the two sides of the same coin,
as mentioned in the introduction to this section. The various representation
theorems show that, in most cases, these risk measures can be interpreted as
worst-case scenarios, which rationalizes the use of stress-testing procedures as
a sound practice for risk management.

In the more general case when the exponent ζ defined in Axiom 8 is no
more equal to 1, and more precisely, when we only require that Axioms 6–8
hold, there is no general representation for the consistent risk measures to
the best of our knowledge. The risk measures ρ̃ obeying Axioms 7 and 8 are
known as the semi-invariants of the distribution of returns of X (see [465,
pp. 86–87]). Among the large family of semi-invariants, we can cite the well-
known centered moments and cumulants of X (including the usual variance).
They are interesting cases that we discuss further below.

1.2.3 Examples of Consistent Measures of Risk

The set of risk measures obeying Axioms 7–8 is huge since it includes all the
homogeneous functionals of (X − E[X]), for instance. The centered moments
(or moments about the mean) and the cumulants are two well-known classes
of semi-invariants. Then, a given value of ζ can be seen as nothing but a
specific choice of the order n of the centered moments or of the cumulants.4

In this case, the risk measure defined via these semi-invariants fulfills the two
following conditions:

ρ̃(X + µ) = ρ̃(X) , (1.20)
ρ̃(λ · X) = λn · ρ̃(X) . (1.21)

4 The relevance of the moments of high order for the assessment of large risks is
discussed in Appendix 1.A.
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In order to satisfy the positivity condition (Axiom 6), one needs to restrict
the set of values taken by n. By construction, the centered moments of even
order are always positive while the odd order centered moments can be neg-
ative. In addition, a vanishing value of an odd order moment does not mean
that the random variable, or risk, X ∈ G is certain in the sense of footnote 1,
since for instance any symmetric random variable has vanishing odd order
moments. Thus, only the even-order centered moments seem acceptable risk
measures. However, this restrictive constraint can be relaxed by first recalling
that, given any homogeneous function f(·) of order p, the function f(·)q is
also homogeneous of order p · q. This allows one to decouple the order of the
moments to consider, which quantifies the impact of the large fluctuations,
from the influence of the size of the positions held, measured by the degree
of homogeneity of the measure ρ̃. Thus, considering any even-order centered
moments, we can build a risk measure ρ̃(X) = E

[
(X − E[X])2n

]ζ/2n, which
accounts for the fluctuations measured by the centered moment of order 2n
but with a degree of homogeneity equal to ζ.

A further generalization is possible for odd-order moments. Indeed, the
absolute centered moments satisfy the three Axioms 6–8 for any odd or even
order. So, we can even go one step further and use non-integer order absolute
centered moments, and define the more general risk measure

ρ̃(X) = E [|X − E[X]|γ ]ζ/γ
, (1.22)

where γ denotes any positive real number.
Due to the Minkowski inequality, these risk measures are convex for any

ζ and γ larger than 1 (and for 0 ≤ u ≤ 1) :

ρ̃(u · X + (1 − u) · Y ) ≤ u · ρ̃(X) + (1 − u) · ρ̃(Y ) , (1.23)

which ensures that aggregating two risky assets diversifies their risk. In fact,
in the special case γ = 1, these measures enjoy the stronger sub-additivity
property, and therefore belong to the class of general deviation measures.

More generally, any discrete or continuous (positive) sum of these risk
measures with the same degree of homogeneity is again a risk measure.
This allows us to define “spectral measures of fluctuations” in the spirit of
Acerbi [2]:

ρ̃(X) =
∫

dγ φ(γ) E [|X − E[X]|γ ]ζ/γ
, (1.24)

where φ is a positive real-valued function defined on any subinterval of [1,∞),
such that the integral in (1.24) remains finite. It is sufficient to restrict the
construction of ρ̃(X) to normalized functions φ, such that

∫
dγ φ(γ) = 1,

since the risk measures are defined up to a global normalization factor. Then,
φ(γ) represents the relative weight of the fluctuations measured by a given
moment order and can be considered as a measure of the risk aversion of the
risk manager with respect to large fluctuations.
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The situation is not so clear for the cumulants, since the even-order cumu-
lants, as well as the odd-order ones, can be negative (even if, for a large class
of distributions, even-order cumulants remain positive, especially for fat-tailed
distributions – even though there are simple but somewhat artificial counter-
examples). In addition, cumulants suffer from another problem with respect
to the positivity axiom. As for the odd-order centered moments, they can
vanish even when the random variable is not certain. Just think of the cu-
mulants of the Gaussian law. All but the first two (which represent the mean
and the variance) are equal to zero. Thus, the strict formulation of the posi-
tivity axiom cannot be fulfilled by the cumulants. Should we thus reject them
as useful measures of risks? It is important to emphasize that the cumulants
enjoy a property which can be considered as a natural requirement for a risk
measure. It can be desirable that the risk associated with a portfolio made of
independent assets is exactly the sum of the risk associated with each individ-
ual asset. Thus, given N independent assets {X1, . . . , XN}, and the portfolio
SN = X1 + · · · + XN , we would like to have

ρ̃(SN ) = ρ̃(X1) + · · · + ρ̃(XN ) . (1.25)

This property is verified for all cumulants, while it does not hold for centered
moments excepted the variance. In addition, as seen from their definition in
terms of the characteristic function

E
[
eik·X] = exp

(
+∞∑
n=1

(ik)n

n!
Cn

)
, (1.26)

cumulants Cn of order larger than 2 quantify deviations from the Gaussian law
and therefore measure large risks beyond the variance (equal to the second-
order cumulant).

What are the implications of using the cumulants as almost consistent
measures of risks? In particular, what are the implications on the preferences
of the agents employing such measures? To address this question, it is infor-
mative to express the cumulants as a function of the centered moments. For
instance, let us consider the fourth-order cumulant:

C4 = µ4 − 3 · µ2
2 = µ4 − 3 · C2

2 , (1.27)

where µn is the centered moment of order n. An agent assessing the fluctua-
tions of an asset with respect to C4 exhibits an aversion for the fluctuations
quantified by the fourth central moment µ4 – since C4 increases with µ4 – but
is attracted by the fluctuations measured by the variance – since C4 decreases
with µ2. This behavior is not irrational because it remains globally risk-averse.
Indeed, it depicts an agent which tries to avoid the larger risks but is ready to
accept the smallest ones. This kind of behavior is characteristic of any agent
using the cumulants as risk measures. In such a case, having C4 = 0 does not
mean that the agent considers that the position is not risky (in the sense that
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the position is certain) but that the agent is indifferent between the large risks
of this position measured by µ4 and the small risks quantified by µ2.

To summarize, centered moments of even orders possess all the minimal
properties required for a suitable portfolio risk measure. Cumulants only par-
tially fulfill these requirements, but have an additional advantage compared
with the centered moments, that is, they fulfill the condition (1.25). For these
reasons, we think it is interesting to consider both the centered moments and
the cumulants in risk analysis and decision making. Finally let us stress that
the variance, originally used in Markowitz’s portfolio theory [347], is nothing
but the second centered moment, also equal to the second-order cumulant (the
three first cumulants and centered moments are equal). Therefore, a portfo-
lio theory based on the centered moments or on the cumulants automatically
contains Markowitz’s theory as a special case, and thus offers a natural gen-
eralization encompassing large risks of this masterpiece of financial science. It
also embodies several other generalizations where homogeneous measures of
risks are considered, as for instance in [241].

We should also mention the measure of attractiveness for risky invest-
ments, the gain–loss ratio, introduced by Bernardo and Ledoit [50]. The gain
(loss) of a portfolio is the expectation, under a benchmark risk-adjusted prob-
ability measure, of the positive (negative) part of the portfolio’s excess payoff.
The gain–loss ratio constitutes an improvement over the widely used Sharpe
ratio (average return over volatility). The advantage of the gain–loss ratio is
that it penalizes only downside risk (losses) and rewards all upside potential
(gains). The gain–loss ratio has been show to yield useful bounds for asset
pricing in incomplete markets that gives the modeler the flexibility to control
the trade-off between the precision of equilibrium models and the credibility
of no-arbitrage methods. The gain–loss approach is valuable in applications
where the security returns are not normally distributed. Bernardo and Ledoit
[50] cite the following domains of application: (i) valuing real options on non-
traded assets; (ii) valuing executive stock options when the executive cannot
trade the options or the underlying due to insider trading restrictions; (iii)
evaluating the performance of portfolio managers who invest in derivatives;
(iv) pricing options on a security whose price follows a jump-diffusion or a fat-
tailed Pareto–Levy diffusion process; and (v) pricing fixed income derivatives
in the presence of default risk.

1.3 Origin of Risk and Dependence

1.3.1 The CAPM View

Our purpose is not to review the huge literature on the origin of risks and their
underlying mechanisms, but to suggest guidelines for further understanding.
For enticing introductions and synopses, we refer to the very readable books of
Bernstein [51, 52]. In [51], Bernstein reviews the history, since ancient times,
of those thinkers who showed how to quantify risk:
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The capacity to manage risk, and with it the appetite to take risk
and make forward-looking choices, are key elements [...] that drive the
economic system forward.

The concept of risks in economics and finance is elaborated in [52], starting
with the origins of the Cowles foundation as the consequence of Cowles’s
personal interest in the question: Are stock prices predictable? In the words
of J.L. McCauley (see his customer review on www.amazon.com),

this book is all about heroes and heroic ideas, and Bernstein’s heroes
are Adam Smith, Bachelier, Cowles, Markowitz (and Roy), Sharpe,
Arrow and Debreu, Samuelson, Fama, Tobin, Samuelson, Markowitz,
Miller and Modigliani, Treynor, Samuelson, Osborne, Wells-Fargo
Bank (McQuown, Vertin, Fouse and the origin of index funds), Ross,
Black, Scholes, and Merton. The final heroes (see Chap. 14, The Ul-
timate Invention) are the inventors of (synthetic) portfolio insurance
(replication/synthetic options).

One of these achievements is the capital asset pricing model (CAPM),
which is probably still the most widely used approach to relative asset val-
uation, although its empirical roots have been found to be weaker in recent
years [59, 160, 223, 287, 306, 401]. Its major idea was that priced risk cannot
be diversified and cannot be eliminated through portfolio aggregation. This
asset valuation model describing the relationship between expected risk and
expected return for marketable assets is strongly entangled with the Mean-
Variance Portfolio Model of Markowitz. Indeed, both of them fundamentally
rely on the description of the probability distribution function (pdf) of as-
set returns in terms of Gaussian functions. The mean-variance description is
thus at the basis of the Markowitz portfolio theory and of the CAPM and its
inter-temporal generalization (see for instance [359]).

The CAPM is based on the concept of economic equilibrium between ra-
tional expectation agents. Economic equilibrium is itself the self-organized
result of complex nonlinear feedback processes between competitive inter-
acting agents. Thus, while not describing the specific dynamics of how self-
organization makes the economy converge to a stable regime [10, 18, 280], the
concept of economic equilibrium describes the resulting state of this dynamic
self-organization and embodies all the hidden and complex interactions be-
tween agents with infinite loops of recurrence. This provides a reference base
for understanding risks.

We put some emphasis on the CAPM and its generalized versions because
the CAPM is a remarkable starting point for answering the question on the
origin of risks and returns: in economic equilibrium theory, the two are con-
ceived as intrinsically entangled. In the following, we expand on this class of
explanation before exploring briefly other directions.

Let us now show how an equilibrium model generalizing the original CAPM
[308, 364, 429] can be formulated on the basis of the coherence measures
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adapted to large risks. This provides an “explanation” for risks from the
point of view of the non-separable interplay between agents’ preferences and
their collective organization. We should stress that many generalizations have
already been proposed to account for the fat-tailness of the assets return dis-
tributions, which led to the multimoments CAPM. For instance, Rubinstein
[421], Krauss and Litzenberger [278], Lim [306] and Harvey and Siddique [223]
have underlined and tested the role of the asymmetry in the risk premium
by accounting for the skewness of the distribution of returns. More recently,
Fang and Lai [162] and Hwang and Satchell [241] have introduced a four-
moments CAPM to take into account the leptokurtic behavior of the assets
return distributions. Many other extensions have been presented such as the
VaR-CAPM [3] or the Distributional-CAPM [389]. All these generalizations
become more complicated but unfortunately do not necessarily provide more
accurate predictions of the expected returns.

Let us assume that the relevant risk measure is given by any measure of
fluctuations previously presented that obey the Axioms 6–8 of Sect. 1.2.2.
We will also relax the usual assumption of a homogeneous market to give
to the economic agents the choice of their own risk measure: some of them
may choose a risk measure which puts the emphasis on the small fluctuations,
while others may prefer those which account for the larger ones. In such an
heterogeneous market, we will recall how an equilibrium can still be reached
and why the excess returns of individual stocks remain proportional to the
market excess return, which is the fundamental tenet of CAPM.

For this, we need the following assumptions about the market:

• H1: We consider a one-period market, such that all the positions held at
the beginning of a period are cleared at the end of the same period.

• H2: The market is perfect, i.e., there are no transaction costs or taxes,
the market is efficient and the investors can lend and borrow at the same
risk-free rate µ0.

Of course, these standard assumptions are to be taken with a grain of salt
and are made only with the goal of obtaining a normative reference theory.
We will now add another assumption that specifies the behavior of the agents
acting on the market, which will lead us to make the distinction between
homogeneous and heterogeneous markets.

Equilibrium in a Homogeneous Market

The market is said to be homogeneous if all the agents acting on this market
aim at fulfilling the same objective. This means that:

• H3-1: All the agents want to maximize the expected return of their port-
folio at the end of the period under a given constraint of measured risk,
using the same measure of risks ρζ for all of them (the subscript ζ refers
to the degree of homogeneity of the risk measure, see Sect. 1.2).
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In the special case where ρζ denotes the variance, all the agents follow a
Markowitz’s optimization procedure, which leads to the CAPM equilibrium,
as proved by Sharpe [429]. When ρζ represents the centered moments, this
leads to the market equilibrium described in [421]. Thus, this approach allows
for a generalization of the most popular asset pricing in equilibrium market
models.

When all the agents have the same risk function ρζ , whatever ζ may be,
we can assert that they have all a fraction of their capital invested in the same
portfolio Π (see, for instance [333] for the derivation of the composition of
the portfolio), and the remaining in the risk-free asset. The amount of capital
invested in the risky fund only depends on their risk aversion and/or on the
legal margin requirement they have to fulfill.

Let us now assume that the market is at equilibrium, i.e., supply equals
demand. In such a case, since the optimal portfolios can be any linear combi-
nations of the risk-free asset and of the risky portfolio Π, it is straightforward
to show that the market portfolio, made of all traded assets in proportion
of their market capitalization, is nothing but the risky portfolio Π. Thus, as
shown in [333], we can state that, whatever the risk measure ρζ chosen by
the agents to perform their optimization, the excess return of any asset i over
the risk-free interest rate (µ(i) − µ0) is proportional to the excess return of
the market portfolio Π over the risk-free interest rate:

µ(i) − µ0 = βi
ζ · (µΠ − µ0), (1.28)

where

βi
ζ =

∂ ln
(
ρζ

1
ζ

)
∂wi

∣∣∣∣∣∣
w∗

1 ,··· ,w∗
N

, (1.29)

where w∗
1 , . . . , w∗

N are the optimal allocations of the assets in the following
sense:⎧⎨
⎩

infwi∈[0,1] ρζ({wi})∑
i≥0 wi = 1∑
i≥0 wiµ(i) = µ ,

(1.30)

In other words, the set of normalized weights w∗
i define the portfolio with min-

imum risk as measured by any convex5 measure ρζ of risk obeying Axioms 6–8
of Sect. 1.2.2 for a given amount of expected return µ.

When ρζ denotes the variance, we recover the usual βi given by the mean-
variance approach:

βi =
Cov(Xi,Π)

Var(Π)
. (1.31)

5 Convexity is necessary to ensure the existence and the unicity of a minimum.
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Thus, the relations (1.28) and (1.29) generalize the usual CAPM formula,
showing that the specific choice of the risk measure is not very important,
as long as it follows the Axioms 6–8 characterizing the fluctuations of the
distribution of asset returns.

Equilibrium in a Heterogeneous Market

Does this result hold in the more realistic situation of an heterogeneous mar-
ket? A market will be said to be heterogeneous if the agents seek to fulfill
different objectives. We thus consider the following assumption:

• H3-2: There exist N agents. Each agent n is characterized by her choice of
a risk measure ρζ(n) so that she invests only in the mean-ρζ(n) efficient
portfolios.

According to this hypothesis, an agent n invests a fraction of her wealth in
the risk-free asset and the remaining in Πn, the mean-ρζ(n) efficient portfolio,
only made of risky assets. Again, the fraction of wealth invested in the risky
fund depends on the risk aversion of each agent, which may vary from one
agent to another.

The composition of the market portfolio Π for such a heterogeneous mar-
ket is found to be nothing but the weighted sum of the mean-ρζ(n) optimal
portfolio Πn [333]:

Π =
N∑

n=1

γnΠn , (1.32)

where γn is the fraction of the total wealth invested in the fund Πn by the
nth agent.

Moreover, for every asset i and for any mean-ρζ(n) efficient portfolio Πn,
for all n, the following equation holds

µ(i) − µ0 = βi
n · (µΠn

− µ0) , (1.33)

where βi
n is defined in (1.29). Multiplying these equations by γn/βi

n, we get

γn

βi
n

· (µ(i) − µ0) = γn · (µΠn
− µ0) , (1.34)

for all n, and summing over the different agents, we obtain(∑
n

γn

βi
n

)
· (µ(i) − µ0) =

(∑
n

γn · µΠn

)
− µ0 , (1.35)

so that

µ(i) − µ0 = βi · (µΠ − µ0) , (1.36)
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with

βi =

(∑
n

γn

βi
n

)−1

. (1.37)

This allows us to conclude that, even in a heterogeneous market, the expected
excess return of each individual stock is directly proportional to the expected
excess return of the market portfolio, showing that the homogeneity of the
market is not required for observing a linear relationship between individual
excess asset returns and the market excess return.

The above calculations miss the possibility stressed by Rockafellar et al.
[408] that two kinds of efficient portfolios Πn may exist in a heterogeneous
market: long optimal portfolios which correspond to a net long position, and
short optimal portfolios which correspond to a net short position. If the exis-
tence of the second kind of portfolio is not compatible with an equilibrium in
a homogeneous market,6 their existence is not precluded in a heterogeneous
market. Indeed, the net short positions of a certain class of agents can be
compensated by the net long position of another class of agents. Thus, as long
as a market portfolio Π corresponding to an overall long position exists, an
equilibrium can be reached, and the results derived in this section still hold.

1.3.2 The Arbitrage Pricing Theory (APT)
and the Fama–French Factor Model

The CAPM proposed a solution for what Roll [414] called

perhaps the most important unresolved problem in finance, because
it influences so many other problems, (which) is the relation between
risk and return. Almost everyone agrees that there should be some
relation, but its precise quantification has proven to be a conundrum
that has haunted us for years, embarrassed us in print, and caused
business practitioners to look askance at our scientific squabbling and
question our relevance.

Indeed, past and recent tests cast strong doubts on the validity of the CAPM.
The recent Fama–French analysis [160] shows basically no support for the
CAPM’s central result of a positive relation between expected return and
global market risk (quantified by the so-called beta parameter). In contrast,
other variables, such as market capitalization and the book-to-market ratio,7

present some weak explanatory power.
6 An equilibrium cannot be reached if all investors want to sell stocks.
7 Ratio of the book value of a firm to its market value. Typically, the book-to-

market is used to identify undervalued companies. If the book-to-market is less
than one the stock is overvalued, while it is undervalued otherwise.
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The Arbitrage Pricing Theory (APT)

The empirical inadequacy of the CAPM has led to the development of more
general models of risk and return, such as Ross’s Arbitrage Pricing Theory
(APT) [418]. Quoting Sargent [427],

Ross posited a particular statistical process for asset returns, then de-
rived the restrictions on the process that are implied by the hypothesis
that there exist no arbitrage possibilities.

Like the CAPM, the APT assumes that only non-diversifiable risk is priced.
But it differs from the CAPM by accounting for multiple causes of such risks
and by assuming a sufficiently large number of such factors so that almost
riskless portfolios can be constructed. Reisman recently presented a general-
ization of the APT showing that, under the assumption that there exists no
asymptotic arbitrage (i.e., in the limit of a large number of factors, the market
risk can be decreased to almost zero), there exists an approximate multi-beta
pricing relationship relative to any admissible proxy of dimension equal to the
number of factors [402]. Unlike the CAPM which specifies returns as a linear
function of only systematic risk, the APT is based on the well-known obser-
vations that multiple factors affect the observed time series of returns, such as
industry factors, interest rates, exchange rates, real output, the money sup-
ply, aggregate consumption, investor confidence, oil prices, and many other
variables [414]. However, while observed asset prices respond to a wide variety
of factors, there is much weaker evidence that equities with larger sensitivity
to some factors give higher returns, as the APT requires.

The Fama–French Three Factor Model

This empirical weakness in the APT has led to further generalizations of
factor models, such as the Fama–French three-factor model [160], which does
not use an arbitrage condition anymore. Fama and French started with the
observation that two classes of stocks show better returns than the average
market: (1) stocks with small market capitalization (“small caps”) and (2)
stocks with a high book-value-to-price ratio (often “value” stocks as opposed
to “growth” stocks). They added the overall market return to obtain the
three factors: (i) the overall market return (Rm), (ii) the performance of small
stocks relative to big stocks (SMB, small minus big), and (iii) the performance
of value stocks relative to growth stocks (HML, high minus low). See the
website of Professor K.R. French8 which updates every quarter the benchmark
factors and also presents the performance of several benchmark portfolios
using different combinations of weights on the three factors. An important
observation must be made concerning Fama and French’s approach to risk in
8 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.
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