SMART INNOVATION,

—
Fm— T

ombinations of
Intelligent Methods
and Applications

Proceedings of the 3rd International
Workshop, CIMA 2012, Montpellier,
France, August 2012

@ Springer

SYSTEMS AND TECHNOLOGIES m 23

Smart Innovation, Systems and Technologies

Volume 23

Series Editors

R. J. Howlett, Shoreham-by-Sea, UK
L. C. Jain, Adelaide, Australia

For further volumes:
http://www.springer.com/series/8767

http://www.springer.com/series/8767

Ioannis Hatzilygeroudis

Vasile Palade
Editors

Combinations of
Intelligent Methods
and Applications

Proceedings of the 3rd International

Workshop, CIMA 2012, Montpellier,
France, August 2012

@ Springer

Editors

Ioannis Hatzilygeroudis Vasile Palade

Department of Computer Engineering Department of Computer Science
and Informatics, School of Engineering University of Oxford

University of Patras Oxford

Patras UK

Greece

ISSN 2190-3018 ISSN 2190-3026 (electronic)

ISBN 978-3-642-36650-5 ISBN 978-3-642-36651-2 (eBook)

DOI 10.1007/978-3-642-36651-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013932646

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The combination of different intelligent methods is a very active research area in
Artificial Intelligence (AI). The aim is to create integrated or hybrid methods that
benefit from each of their components. It is generally believed that complex
problems can be easily solved with such integrated or hybrid methods.

Some of the existing efforts combine what are called soft computing methods
(fuzzy logic, neural networks, and genetic algorithms) either among themselves or
with more traditional AI methods such as logic and rules. Another stream of efforts
integrates case-based reasoning or machine learning with soft computing or
traditional Al methods. Yet, another integrates agent-based approaches with logic
and also nonsymbolic approaches. Some of the combinations have been quite
important and more extensively used, like neuro-symbolic methods, neuro-fuzzy
methods, and methods combining rule-based and case-based reasoning. However,
there are other combinations that are still under investigation, such as those related
to the Semantic Web. In some cases, combinations are based on first principles,
whereas in other cases they are created in the context of specific applications.

The 3rd Workshop on “Combinations of Intelligent Methods and Applications”
(CIMA 2012) was intended to become a forum for exchanging experience and
ideas among researchers and practitioners who are dealing with combining intel-
ligent methods either based on first principles or in the context of specific
applications.

Important issues of the Workshop were (but not limited to) the following:

Case-based reasoning integrations

Genetic algorithms integrations

Combinations for the Semantic Web

Combinations and Web intelligence

Combinations and Web mining

Fuzzy-evolutionary systems

Hybrid deterministic and stochastic optimization methods
Hybrid knowledge representation approaches/systems
Hybrid and distributed ontologies

Information fusion techniques for hybrid intelligent systems
Integrations of neural networks

vi Preface

Intelligent agents Integrations

Machine learning combinations

Neuro-fuzzy approaches/systems

Applications of combinations of intelligent methods to

— Biology and bioinformatics
— Education and distance learning
— Medicine and health care

CIMA 2012 was held in conjunction with the 22nd European Conference on
Artificial Intelligence (ECAI 2012).

This volume includes revised versions of the papers presented in CIMA 2012.

We would like to express our appreciation to all authors of submitted papers as
well as to the members of CIMA-12 program committee for their excellent work.
We would also like to thank the ECAI 2012 Workshop Chairs for accepting to host
CIMA 2012.

We hope that this proceedings will be useful to both researchers and developers.
Given the success of the first three Workshops on combinations of intelligent
methods, we intend to continue our effort in the coming years.

Ioannis Hatzilygeroudis
Vasile Palade

Workshop Organization

Chairs-Organizers
Toannis Hatzilygeroudis, University of Patras, Greece
Vasile Palade, University of Oxford, UK

Program Committee

Salha Alzahrani, Taif University, Saudi Arabia

Plamen Agelov, Lancaster University, UK

Soumya Banerjee, Birla Institute of Technology, India

Nick Bassiliades, Aristotle University of Thessaloniki, Greece
Kit Yan Chan, Curtin University of Technology, Australia
Artur S. d’Avila Garcez, City University, UK

Constantinos Koutsojannis, TEI of Patras, Greece

George Magoulas, Birkbeck College, University of London, UK
Toni Moreno, University Rovira i Virgili, Spain

Ciprian-Daniel Neagu, University of Bradford, UK

Jim Prentzas, Democritus University of Thrace, Greece
Roozbeh Razavi-Far, Universite Libre de Bruxelles, Belgium
Han Reichgelt, Southern Polytechnic State University, GA, USA
Jun Sun, Jiangnan University, China

George Tsihrintzis, University of Piraeus, Greece

Contact Chair

Ioannis Hatzilygeroudis

Department of Computer Engineering and Informatics
University of Patras, Greece

Email: ihatz@ceid.upatras.gr

vii

Contents

Intelligent Agents: Integrating Multiple Components Through

a Symbolic Structure.

Razvan Dinu, Tiberiu Stratulat and Jacques Ferber

An Architecture for Multi-Dimensional Temporal Abstraction

Supporting Decision Making in Oil-Well Drilling

Odd Erik Gundersen and Frode S¢rmo

A New Impulse Noise Filtering Algorithm Based

on a Neuro-Fuzzy Network

Yueyang Li, Haichi Luo and Jun Sun

A Fuzzy System for Educational Tasks for Children

with Reading and Writing Disabilities

Adalberto Bosco C. Pereira, Gilberto Nerino de Souza Jr.,
Dionne C. Monteiro and Leonardo B. Marques

Optimizing the Performance of a Refrigeration System Using

an Invasive Weed Optimization Algorithm.

Roozbeh Razavi-Far, Vasile Palade and Jun Sun

A New Cooperative Evolutionary Multi-Swarm Optimizer
Algorithm Based on CUDA Architecture Applied

to Engineering Optimization

Daniel Leal Souza, Otavio Noura Teixeira, Dionne Cavalcante Monteiro
and Roberto Célio Limao de Oliveira

21

41

57

79

95

ix

http://dx.doi.org/10.1007/978-3-642-36651-2_1
http://dx.doi.org/10.1007/978-3-642-36651-2_1
http://dx.doi.org/10.1007/978-3-642-36651-2_2
http://dx.doi.org/10.1007/978-3-642-36651-2_2
http://dx.doi.org/10.1007/978-3-642-36651-2_3
http://dx.doi.org/10.1007/978-3-642-36651-2_3
http://dx.doi.org/10.1007/978-3-642-36651-2_4
http://dx.doi.org/10.1007/978-3-642-36651-2_4
http://dx.doi.org/10.1007/978-3-642-36651-2_5
http://dx.doi.org/10.1007/978-3-642-36651-2_5
http://dx.doi.org/10.1007/978-3-642-36651-2_6
http://dx.doi.org/10.1007/978-3-642-36651-2_6
http://dx.doi.org/10.1007/978-3-642-36651-2_6

X Contents

Hybrid Approach of Genetic Programming and Quantum-Behaved

Particle Swarm Optimization for Modeling and Optimization

of Fermentation Processes 117
Jun Sun, Vasile Palade, Zhenyu Wang and Xiaojun Wu

Hybrid Client Specific Discriminant Analysis and its Application
to Face Verification. 137
Xiao-Qi Sun, Xiao-Jun Wu, Jun Sun and Philippe Montesinos

http://dx.doi.org/10.1007/978-3-642-36651-2_7
http://dx.doi.org/10.1007/978-3-642-36651-2_7
http://dx.doi.org/10.1007/978-3-642-36651-2_7
http://dx.doi.org/10.1007/978-3-642-36651-2_8
http://dx.doi.org/10.1007/978-3-642-36651-2_8

Intelligent Agents: Integrating Multiple
Components Through a Symbolic
Structure

Razvan Dinu, Tiberiu Stratulat and Jacques Ferber

Abstract In order to handle complex situations, autonomous software agents need
multiple components ranging from simple input/output modules to sophisticated
Al techniques. Integrating a high number of heterogeneous components is a non-
trivial task and this paper proposes the use of a symbolic middleware to handle
inter-component interactions. A generalized hyper-graph model is defined, a
simple and straightforward representation language is proposed and a pattern
matching mechanism is introduced together with a basic performance evaluation.
Finally, the paper shows how a flexible symbolic middleware can be built and a
few examples are presented.

Keywords multi-agent system - multiple component integration - symbolic
middleware

1 Introduction

In order to keep up with the increasingly complex real-world problems, autono-
mous software agents need to integrate more and more components that range
from simple input/output modules to sophisticated Al techniques. As the number
of components increases the integration itself becomes an issue which unfortu-
nately has been neglected until recent years. More and more researchers agree that

R. Dinu (X)) - T. Stratulat - J. Ferber

Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier,
Montpellier, France

e-mail: dinu@lirmm.fr

T. Stratulat
e-mail: stratulat@lirmm.fr

J. Ferber
e-mail: ferber@lirmm.fr

1. Hatzilygeroudis and V. Palade (eds.), Combinations of Intelligent Methods 1
and Applications, Smart Innovation, Systems and Technologies 23,
DOI: 10.1007/978-3-642-36651-2_1, © Springer-Verlag Berlin Heidelberg 2013

2 R. Dinu et al.

“the question about the inner workings of the pieces themselves holds equal
importance to the question about the nature of the various dynamic glues that hold
the pieces together” [16].

When integrating multiple components, two levels of integration can be distin-
guished: generic and specific. The generic level is concerned with general mecha-
nisms such as how components communicate with each other and how they exchange
data. The specific level is concerned with the details of integrating components X,
X>, ..., Xy, of specific types, such as when component X; calls a function of component
X;, what data should X; provide, when should X; send the data to X;, etc.

Usually, in a running software agent, the generic level takes the form of a
middleware and provides primitives for data and control flow to different specific
levels. Such a middleware has to provide solutions to three main challenges:
communication, data sharing and global control. The communication challenge is
concerned with how different components can reach each other and how can they
use each other’s functionalities. The data sharing is concerned with how compo-
nents can provide data (content) to other components. Global control is concerned
with how all the interactions between components are handled and how a coherent
global behaviour of the agent can be achieved.

One traditional technique for generic integration of multiple components is the
blackboard system in which a set of experts, also called knowledge sources (KS),
are constantly monitoring a blackboard searching for an opportunity to apply their
expertize. Whenever they find sufficient information on the blackboard they apply
their contribution and the process continues [6]. Unlike other techniques that
implement formal models, the blackboard approach was designed to deal with ill-
defined complex interactions. One of the first applications of the blackboard
system was the speech understanding HEARSAY-II system [7] in which multiple
components used a shared blackboard to create the required data structures.

Another generic integration technique is based on message passing and usually
uses a publish-subscribe mechanism in which components subscribe to different
types of messages and whenever a message arrives it is forwarded to corresponding
modules. A message-based communication protocol for Al that has been gaining in
popularity in recent years is the OpenAlIR protocol managed by mindmakers.org [2].

CORBA is a well known standard by OMG [5], according to which components
written in multiple computer languages and running on multiple computers are
exposed as objects and their interaction is performed by method invocation.
CORBA is very used as system integration in humanoid robotics, see for instance
the simulator OpenHRP [11].

All of the above techniques provide more or less solutions to the three chal-
lenges mentioned earlier. Blackboards clearly provide means for data sharing,
enables communication between components indirectly, but the control compo-
nent is usually a simple scheduler and it does not help much in assuring a coherent
global behaviour of the agent. On the other hand, message-passing focuses on
communication and object-oriented techniques on communication and somewhat
data sharing. Both leave global control entirely up to the interacting components.

Intelligent Agents 3

Both improvements and hybrid solutions have been proposed for the above
techniques. For example, whiteboards [17] consist of a blackboard with (i) a
general-purpose message type, (ii) ontologically defined message and data stream
types and (iii) specification for routing between system components. They also add
an explicit temporal model thus providing more specialized solutions for com-
munication and data sharing challenges. Also, the GECA Framework (Generic
Embodied Conversational Agent) uses a hybrid solution in which multiple
blackboards are used to perform message-passing based on message types [12].

Our opinion is that components integration would be much easier if we had an
integration technique based on a more expressive data model and which provided
better support for different patterns of global control.

By pattern of global control we understand the most abstract model that can be used
to explain the behaviour of the software agent. A classical example of such a pattern,
especially used in robotics, is the Brooks subsumption architecture [4]. In this
approach components are structured into layers and those situated at higher levels are
capable of altering the input and inhibiting the output of components at lower levels.

Another very widely used pattern of global control, especially in multi-agent
systems, is BDI (Beliefs Desires Intentions) [15]. The software agent maintains a set
of beliefs based on which desires are created. A desire which the agent has decided to
pursue becomes an intention and a plan is chosen to achieve the desired goal.

More sophisticated patterns of global control come from the agent architectures
domain. For example the INTERRAP agent architecture [14] uses three control
layers: Behaviour-based layer, Local Planning layer and Cooperative Planning
layer. Each layer has its own world model and includes subcomponents for situ-
ation recognition, planning and scheduling.

When we say that the generic integration middleware should support patterns of
global control such as the ones mentioned above we are not saying that the patterns
should be entirely implemented inside the middleware. But rather, the middleware
should contain only part of the pattern and should smoothly integrate with components
implementing key aspects of the control pattern (for instance a planning engine).

This paper focuses on the generic level of integration and proposes a middle-
ware model that enables easier and more straightforward integration of different Al
and non-Al components of an autonomous software agent. The next section
introduces our approach and Sects. 3-5 introduce our new symbolic model for
generic integration and also perform a preliminary evaluation of its performance.
Section 6 presents an implementation for smart phones based on the Android
platform and finally, Sect. 6 and 7 present our comments and conclusions.

2 Approach

As it has been outlined in the previous section, the main shortcomings for current
approaches concern the data sharing and global control challenges. Our approach is
an extension of the blackboard model which addresses exactly these two challenges.

4 R. Dinu et al.

2.1 Data Sharing Challenge

Firstly, we propose that the blackboard uses a more expressive symbolic data
model rather than just isolated bits of typed data. The chosen symbolic structure is
inspired by the generalized hyper-graph model proposed by [3]. Hyper-graphs
generalize normal graphs by allowing an edge to contain more than two nodes and
a directed hyper-graph considers edges as ordered sets (tuples). We are interested
in a generalization of directed hyper-graphs in which an edge can contain both
nodes and other edges. This represents the generalized hyper-graph model we’re
using and it will be described in more details in the next section. However, we will
be using a different terminology that makes more sense in the context of symbolic
representations: symbols instead of nodes and links instead of hyper-edges.

Secondly, we extend the generalized hyper-graph structure with a map which
associates each symbol of the hyper-graph with another symbol. Finally, we allow
each symbol to have some attached information, which can be typed or not.

A generalized hyper-graph, the information associated with the symbols and the
map of symbols form a SLiM structure (Symbol Link Map). From now on, we will
use the capital version (SLiM) to refer to the model and the lower letter version
(slim) as a shorthand for “SLiM structure” which refers to a concrete structure.

One related work which uses a hyper-graph model close to ours is [13]. They
use a directed hyper-graph and integrate a typing system in which a node has a
handle, a type, a value and a target set. The main differences in our model are the
lack of the typing system and the addition of the symbolic map which, as it will be
shown in future sections, can be used to create a typing system. However, they
show how such a hyper-graph structure can be efficiently implemented and used as
central database especially in Al applications. The OpenCog project [9] is also an
illustrative example of hyper-graphs usage in Al projects. These works show the
increasing interest of using the flexible hyper-graphs structures in Al

2.2 Global Control Challenge

In order to address the issue of global control we inspired ourselves from the
patternist philosophy of mind whose main premise is “the mind is made of pat-
terns”. In this perspective a mind is a collection of patterns associated with per-
sistent dynamical processes capable of achieving different goals in an
environment. For a quick overview of the patternist philosophy of mind and also a
different way of applying it in the context of Al we recommend [8].

We define a pattern as a particular type of slim and we show how a set of
patterns can be efficiently matched using an automaton. Next, we propose an
interaction mechanism between components based on patterns that uses a central
SLiM structure which can by accessed and modified by any component. Each
component can register two types of patterns: data patterns and capability patterns.

Intelligent Agents 5

Whenever a component modifies the central slim and a data pattern is found then
the corresponding component is notified. Also, whenever a component requests the
execution of something that matches a capability pattern then the corresponding
component is notified.

As it will be detailed in the following section all these mechanisms provide a
very flexible way of performing interaction between different components of a
software agent and they can be packed into a symbolic middleware which can be
used in conjunction with other agent frameworks.

3 The SLiM Model

This section formally introduces the SLiM model and also proposes a represen-
tation language to represent a slim.

3.1 Formal Definition

Definition 1 Let S be a finite set of elements. Ty is the set of all tuples over S and
it is inductively defined as:

e Ty ={(0,0)}.
o T ={XU{(k,s)}|X € Ty_1,s € S} for k> 1
L TS = U/?CZOT](

The sole element of Ty is called the empty tuple and will be denoted simply by ().
An element t € T is called a tuple of length k. Instead of r= {(0,0),
(1,s1), ..., (k,sx)} we use the equivalent notation ¢t = (sy, 53, ..., s¢). We also use
the notation s € ¢ to mean 3j > 1 such that (j,s) € r.

Definition 2 Let the following:

(i) S be a finite set of elements called symbols.

(ii) [: S — Ts be a function called a linking function on S.

(iii) i : S — I be a function called an information function on S, where I is a set of
elements.

(iv) m: S — S, where §' C S, be a partial function on S called a map on S.

Then the quadruple <S,[,i,m > is called a SLiM structure or simply a slim. The
elements of s € S for which [(s) # () are also called links and if x,y € S and
m(x) =y we say that x is mapped to y.

Below are a few terminological definitions associated with the SLiM model.

Definition 3 A symbol d € S is reachable from a symbol s € S if and only if
there exist s1,52,...,5, €S such that s; € I(s),s2 € I(s1), ...,y € [(s,—1) and
d € l(sy).

6 R. Dinu et al.

Definition 4 A symbol d € S is mappable from a symbol s € S if and only if d is
equal to s or there exist sy,s2,...,5, €S such that m(s) =s;,m(s;) =
8§25, m(Sp—1) = s, and m(s,) = d.

Definition 5 A tuple (sy,s2,...,5,) € Ts is called an implied link if and only if
there exist xj, xp, ...,x,,y € S such that x; is mappable from s, ..., x, is mappable
from s, and I(y) = (x1,%2,...,%,). If x; =s; for i = 1,n then the link is called
explicit.

Definition 6 A slim <S,/,i,m > is called acyclic if and only if no symbol can
be reached from itself.

3.2 Representation Language

Before going any further we will introduce an abstract syntax for a representation
language, called the SLiM language, that can be used to describe a slim. Given S
and / the sets of symbols and information elements, the language is given by the
following EBNF:

slim — symbol+ (1)
symbol — [id|1link] [: [info|symbol]l]? (2)
link — [id=]7{symbol+} (3)
id—seS (4)
info —z €1 (5)

(the curly brackets are part of the terminal alphabet of the SLiM language)

Before giving a few examples we will provide the semantics of the production
rules. In order to do that we consider that the non-terminal nodes of the grammar
symbol, 1ink and id have a synthesized attribute “s” which holds the corre-
sponding symbol s € S:

Production rule Attribute rule

symbol — id[...]? symbol.s = id.s

symbol — link[...]? symbol.s = link.s
link — id={symbol+} link.s = id.s
link — {symbol+} link.s = use/new

n w

id—>s€eS id.s = s

The use/new keyword means that if there is already a link corresponding to the
sequence of symbols on the right side then the attribute 1ink. s uses the same id,
otherwise it gets a random id from § not used by any other production rule. Below
we will give the semantics of each of the right sides of production rules 2 and 3.

Intelligent Agents 7

Right side Semantics
{s1 ... spn} l(use/new) = (s1.s, ...,8,.8)
id={s; ... sp} I(id.s) = (s1.s,...,80.8)

[id|1link] :symbol m([id|1link].s) =symbol.s
[id|link]:info ¢([id|link].s) =info

Here’s an example of a slim described using the SLiM language:

here={my location} (1)
here:{city Lyon} (2)
{user said msg:"Hello"} (3)

Let <S,1,i,m > be the slim described in the above example. The symbols set
is §= { my, location, here, city, Lyon, user, said, msg, randl,
rand2 } and the information set is / = { null, ‘*Hello’’ }. The first line
creates a link between the symbols my and location and assigns the id here,
which means /(here) = (my , location). The second line creates a link
between city and Lyon whose id is not important (and we can consider it to be
randl € §) and maps the symbol here to it. This means /(randl) = (city,
Lyon) and that m(here) = randl. The third line creates a link between other
three symbols and assigns some information to the last one, i(msg)=
‘*Hello’’. All other symbols s € S have i(s) = null.

The meaning of the first production rule is the union of all the symbols,
information and mappings defined by the symbol production rules. We say that a
SLiM representation (a string in the SLiM language) is valid if and only if there
are no contradictions (i.e. a symbol being assigned two different information, a
symbol being mapped to different symbols, multiple definitions of a link, etc.).
From now on, we will use the SLiM language rather than the formal definition to
describe SLiM structures.

One last observation concerns the use of curly brackets to create links. The
language does not use parentheses or square brackets in order to avoid confusion
with languages such as LISP or REBOL.

3.3 Modeling with SLiM

The SLiM model does not impose any particular semantics on the data being
represented in a slim. It is a semi-structured, general purpose model based on a
generalized hyper-graph structure. The actual schema that will be used in a slim
will evolve dynamically and data integrity constraints can be enforced by different
components using the slim. This type of flexible models is especially suitable for
online environments.

8 R. Dinu et al.

4 Patterns

As it was discussed in Sect. 2, the pattern concept is central to our approach.
Below we will explain what a pattern is, how can multiple patterns be matched,
and we perform a simple performance evaluation of the proposed matching
mechanism.

4.1 Definition

Definition 7 ? and @ are two special symbols called the any and the root symbols.

Definition 8 A partern is an acyclic slim <S,/,i,m > with the following
properties:

(i) ?eSand @ € S;

(i) @ is mapped to a symbol, which is called the root of the pattern, and all other
mappings, if any, are to ?;

(iii) the symbols mapped to ? are called generic symbols and they are all
reachable from the root of the pattern;

(iv) it contains no information (I = {0}).

Before discussing the different properties from the above definition we will pro-
vide two examples, described using the SLiM language, so that the reader can have
a better grasp of what patterns look like. Each pattern has been enclosed inside an
additional set of curly brackets:

First of all, we are only interested in patterns at the symbolic level, disregarding
the information attached to symbols, hence property iv). Secondly, the SLiM
model is intended to represent data mainly through symbols and links and that is
why patterns will be used to describe only parts of the symbolic hyper-graph. As a
consequence, a pattern contains only mappings that have special meaning to the
matching mechanism.

In a few words, a pattern is a generic way of describing a set of symbols and links.
A pattern can contain regular symbols or generic symbols (those mapped to ?) which
act as place holders for regular symbols. For convenience, we can omit the “@ : ” for

Fig. 1 “Examples of {
patterns” {sound enabled}
@: { notify user Message:? }

-~

online
@: {User:? wants {listen album Album:?} }
{User allowed music}

