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Foreword

This book introduces contributions to the topic of systematic design of analog, RF
and mixed signal circuits. In my view, the material represents a significant step to-
wards advancing the state-of-the-art in the field of robust analog and mixed signal
design automation. Although The topic has been researched for many years primar-
ily for pure analog circuits, it is quite evident that extending the research effort to
include mixed signal and RFIC design is very timely and relevant in light of the ever
increasing complexity of complete Systems-on-Chip (SoCs) which include analog,
RF and mixed signal on the same die with Ultra large scale digital. Such SoCs are
also widely recognized as the “More-than-Moore” scaling extending the end of the
silicon roadmap for many years to come. The field of systematic circuit design has
long been a mature science area for many years for digital circuits but has repre-
sented a formidable challenge to analog circuits. However, the analysis and synthe-
sis techniques and flows presented in this book provide practical solutions to meet
the challenge. Not only does the material address some of the traditional bottlenecks
of analog and RF design automation such as device sizing and layout generation,
but also incorporates tools and methodologies to deal with worst case corners and
random process variations. This will indeed result in automated and robust design
solutions that lend themselves naturally to implementations in deep nanometer pro-
cess nodes and with enhanced yields. Automation of these More-than-Moore SoCs
will also help with meeting narrow market windows and with reducing development
costs of complex nano-scale chip sets.

The material is organized in two parts and presented in 16 chapters. It strikes a
good balance between theory and practice and includes case studies or design exam-
ples to reinforce understanding of basic concepts. The book is highly recommended
for mixed signal, RF and SoC design engineers and practitioners in the semiconduc-
tor industry as well as researchers and graduate students in electrical and computer
engineering with a major in circuit design and design automation.

November 2012 Mohammed Ismail

Mohammed Ismail
Ohio State University, Columbus, USA
Currently with Khalifa University of Science, Technology and Reserach (KUSTAR), UAE



Preface

Advances in electronics technologies have led to a kind of a ‘boom’ in a very wide
range of fields, such as, informatics, bioengineering, communications, electronic
gadgets, to name a few.

Despites the fact that in the digital domain, designers can take full benefits of
IPs and design automation tools to synthesize and design very complex systems,
the analog designers’ task is still considered as a ‘handcraft’, cumbersome and very
time consuming process. This is mainly due to the lack of support by computer-
aided design programs, which has led to a so-called ‘productivity gap’ (difference
between what technology can offer and what can be manufactured). Thus, tremen-
dous efforts are being deployed by researchers, R/D engineers, etc. to develop new
design methodologies in the analog/RF and mixed-signal domains.

Actually, the analog/RF and mixed signal fields rely on three major areas, namely
Synthesis, Design and Optimization. These domains form a trilogy in this realm of
analog/RF and mixed-signal circuit and system design. Endeavors are being made to
develop new synthesis techniques (building novel active circuits, for instance), de-
sign methodologies (proposing new circuits) and sizing/optimization techniques (of-
fering more complex functionalities with advanced performances, higher frequency
operating ranges, less power consumption, etc.).

On this basis, this book collects in sixteen Chapters, recent theories, synthesis
techniques and design methodologies, as well as new sizing approaches. It high-
lights their application to the design of high performance analog/RF and mixed-
signal circuits and systems. This book is intended to researchers and R/D engineers,
as well. The book encompasses two parts: Methodologies and Techniques.

The first part, Methodologies, is composed of seven Chapters, very briefly intro-
duced in the following:

Chapter 1, entitled ‘Towards Automatic Structural Analysis of Mixed-Signal
Circuits’, is proposed by M. Eick and H. Graeb. It presents a new method for
the automatic structural and functional analysis of analog, digital and mixed-signal
circuits.

Chapter 2, ‘Efficient Synthesis Methods for mm-wave Frequency Passive Com-
ponents and Amplifiers’, authored by B. Liu and G. Gielen, deals with an efficient
high-frequency synthesis methods for integrated passive components as well as for
the synthesis of mm-wave-frequency linear amplifiers, using the memetic machine
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learning-based differential evolution method and the efficient machine learning-
based differential evolution method, respectively.

Chapter 3, entitled ‘Self-Healing Circuits Using Statistical Element Selection’
and proposed by V. H.-C. Chen, G. Keskin, and L. T. Pileggi, analyzes the statistical
element selection methodology for the implementation of low-power self-healing
circuits and systems.

Chapter 4, ‘Improving Design Feature Reuse in Analog Circuit Design through
Topological-Symbolic Comparison and Entropy-based Classification’, authored by
C. Ferent and A. Doboli introduces a novel circuit synthesis methodology based on
concept comparison, combination, learning, and re-use.

Chapter 5 that is entitled ‘Graph-based symbolic and symbolic sensitivity analy-
sis of analog integrated circuits’ and proposed by S. Rodriguez-Chavez, A.A. Palma-
Rodriguez, E. Tlelo-Cuautle, and S.X.-D. Tan, describes a graph-based technique for
the solution of a system of equations for analog ICs formulated by applying sym-
bolic NA and for symbolic sensitivity analysis.

Chapter 6 titled ‘A Designer Centric Analog Synthesis Flow’, which is authored
by F. Javid, S. Youssef, R. Iskander, and M.-M. Louërat, presents a designer centric
analog synthesis flow that is fully controlled by the designer and offers an intuitive
design approach that is composed of a sizing tool and a layout generation tool.

Chapter 7; ‘Analog Circuit Design based on Robust POFs using an Enhanced
MOEA with SVM Models’ by N. Lourenço, R. Martins, M. Barros, and N. Horta
highlights a multi-objective design methodology for automatic analog integrated
circuits synthesis, which enhances the robustness of the solution by varying techno-
logical and environmental parameters, and by the inclusion of corner cases.

The second part of the book, Techniques, encompasses the nine following
Chapters:

Chapter 8; ‘Applications of symbolic analysis in the design of analog circuits’
by F. Grasso, A. Luchetta, and M. C. Piccirilli, describes the use of symbolic tech-
niques in the realization of efficient automatic tools for designing analog circuits.
In particular three phases of the design cycle of an integrated circuit are considered:
the simulation phase, the design centering phase and the fault diagnosis phase.

Chapter 9, titled ‘Synthesis of Electronically-Controllable Signal Process-
ing/Signal Generation Circuits using Modern Active Building Blocks’, is authored
by R. Senani, D. R. Bhaskar, A. K. Singh, and V. K. Singh focuses on the synthesis
of various electronically-controllable signal processing/signal generation circuits.
The coverage includes the basics and hardware implementation of various build-
ing blocks mentioned above and includes some elegant representative applications
using them.

Chapter 10, entitled ‘Synthesis of Generalized Impedance Converter and
Inverter Circuits Using NAM Expansion’ by A. M Soliman proposes the use of
the nodal admittance matrix expansion technique to generate all possible voltage
generalized impedance converter and the current generalized impedance converter
circuits, and the realizations of two types of the generalized impedance inverter
circuits.
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Chapter 11; ‘Fractional Step Analog Filter Design’, by T. Freeborn, B. Maundy,
and A. Elwakil outlines the process to design, analyze, and implement continuous-
time fractional-step filters, and presents new methods and design equations for the
physical realization of these filters using fractional capacitors, SABs, FPAA hard-
ware, and FDNR topologies.

Chapter 12, entitled ‘The Flipped Voltage Follower: Theory and applications’
and that is authored by J. Ramirez-Angulo, M. R. Valero-Bernal, A. Lopez-Martin,
R. G. Carvajal, A. Torralba, S. Celma-Pueyo, and N. Medrano-Marqués, exposes
and summarizes in a tutorial way, the most relevant information published to date
on the FVF, and presents several improved FVF cells and structures and gives a
comparison of their performances and characteristics.

Chapter 13, titled ‘Synthesis of Analog Circuits using only Voltage and Cur-
rent Followers as Active Elements’, by R. Senani, D.R. Bhaskar, A.K. Singh, and
R.K. Sharma, presents a brief account of some prominent works done on the analog
circuit design using VFs and CFs as active elements, together with the design of
VFs and CFs themselves.

Chapter 14; ‘Design of Setable Active Lossy Inductors’, proposed by
M. Pierzchala, and M. Fakhfakh is concerned with transformation of passive LC
filters into active RC-circuits using signal-flow graphs in the two-graph by using
exclusively RC-elements and the newly introduced ‘active switches’. The Chapter
also deals with the reduction of the complexity of the constructed active circuits.

Chapter 15, entitled ‘MIDAS: Microwave Inductor Design Automation on
Silicon’ by L. Aluigi, F. Alimenti, L. Roselli, D. Pepe, and D. Zito emphasizes a
methodology to automate the design of microwave inductor on silicon and presents
the implementation of an auxiliary CAD tool for Microwave Inductor Design
Automation on Silicon.

Chapter 16; ‘LC-VCO Design Challenges in the Nano-Era’ authored by P.
Pereira, H. Fino, M. Fakhfakh, F. Coito, and M. Ventim-Neves exposes an optimiza-
tion based methodology for the design of LC-VCOs whose efficiency is granted
by the use of analytical models to characterize the behavior of active and passive
elements.

Finally, we want to use this opportunity to thank all the authors for their high
quality contributions, and the reviewers for their valuable help. We are also thank-
ful to Prof. Mohamed Ismail (Ohio State University, Columbus, USA. Currently
with Khalifa University of Science, Technology and Reserach (KUSTAR), UAE)
for writing the foreword of the book. Our thanks go also to the SPRINGER team for
his support and assistance.

Mourad Fakhfakh
Esteban Tlelo-Cuautle

Rafael Castro-López
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Chapter 1
Towards Automatic Structural Analysis of
Mixed-Signal Circuits

Michael Eick and Helmut Graeb

Abstract. A new approach for the structural analysis of integrated circuits is pre-
sented in this chapter. As a unique feature this approach can handle circuits that
contain analog and digital components at the same time. Such a situation occurs,
e.g., in mixed–signal circuits. First, the approach analyzes the circuit for basic ana-
log and digital building blocks. Next, a structural signal flow analysis partitions the
circuit into an analog and digital part. It is also used to determine true pass–gate di-
rections and break feedback loops. Finally, the logic functions of the building blocks
as well as the complete digital circuit part are extracted. The chapter presents ap-
plication examples for digital standard cell libraries and mixed–signal circuits. For
industrial grade standard cell libraries more than 95% of the contained cells are
analyzed correctly. The mixed–signal examples include a charge pump as well as
voltage–controlled ring oscillator.

1.1 Introduction

Mixed–signal circuits play an important role in most modern integrated circuits.
Typical examples are analog–to–digital and digital–to–analog converters, voltage–
controlled ring oscillators and charge pumps. Like pure analog circuits, mixed–
signal circuits are subject to several constraints, e.g., certain MOSFET transistors
must work in saturation region and special layout styles must be applied to some
devices to achieve good matching. The availability of such constraints in machine–
readable form is an indispensable prerequisite for the automation of design steps
such as sizing and layout synthesis. Usually such a machine–readable documenta-
tion is not available, which requires algorithms to extract these constraints from the
schematic.

Michael Eick · Helmut Graeb
Institute for Electronic Design Automation, Technische Universität München,
Munich, Germany
e-mail: {eick,graeb}@tum.de

M. Fakhfakh et al. (Eds.): Analog/RF & Mixed-Signal Circuit Sys. Design, LNEE 233, pp. 3–25.
DOI: 10.1007/978-3-642-36329-0_1 c© Springer-Verlag Berlin Heidelberg 2013
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analog digital

netlist

preprocessing (Sec. 2)

building block recognition (Sec. 3)

structural signal flow analysis (Sec. 4)

logic function extraction (Sec. 5)

logic functionstructural information

Fig. 1.1 Overall structural analysis flow

Previous work has shown that such constraints can be generated automatically
for analog circuits [6, 7, 14]. The authors of [14] use building block recognition
to identify analog blocks such as current mirrors. The available building blocks are
defined through a library, which can contain CMOS and bipolar structures. Ambigu-
ities are resolved using a dominance graph. The authors of [6, 7] compute symmetry
in analog circuits using the recognized building blocks. Based on detected building
blocks and symmetries, constraints for sizing and placement are generated.

These methods cannot be applied to mixed–signal circuits. This is because
mixed–signal circuits consist of common analog components, such as current mir-
rors, common digital components, such as inverters and logic gates, as well as pass–
gates and pass–transistors. In addition, continuous time and signal values can be
assumed for analog circuits, for mixed-signal circuits time and signal values can be
discrete.

Current approaches for the structural analysis of digital circuits can be divided
into two classes. The first class assumes a CMOS structure and analyzes the parallel
and serial connections of the transistors using special algorithms, e.g., [4, 5, 9, 11,
20]. These approaches can handle nearly all digital CMOS circuits but are limited
to this type of circuit, which makes them infeasible for mixed–signal circuits. Some
approaches can generate a graph representing the circuit structure, e.g., [11, 20].
The second class compares a netlist to a given library using subgraph isomorphism
algorithms, e.g., [13, 16, 21, 22]. They are applicable for a wide range of circuit
types but are limited to the provided library. Both approaches can yield a logic
function for each identified subcircuit, which in turn allows to compute the overall
logic function.

In this book chapter, we will present a new method enhancing the approaches
of [7, 14] to handle mixed–signal circuits. The overall analysis flow is shown in
Fig. 1.1. First, a netlist is read and some preprocessing is performed. After that, a
building block recognition algorithm is executed. Compared to the state of the art,
it provides the following new features,
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• a versatile building block library for analog, digital and mixed–signal circuits,
• a corresponding dominance relation,
• a new recognition algorithm that can handle this library.

The approach uses a hierarchical library combining the benefits of library based
approaches and algorithmic approaches. Next, a structural signal flow analysis is
performed. It enhances the analysis presented in [6, 7] for analog circuits to handle
digital and mixed–signal circuits. Algorithms to assign pass–gate directions and to
break feedback loops are added. Finally, the logic function of the digital circuit part
is extracted.

Preprocessing, enhanced building block recognition and structural signal flow
analysis are discussed in Sections 1.2, 1.3 and 1.4, respectively. Section 1.5 intro-
duces the logic function extraction algorithm. Application examples are shown in
Section 1.6. Section 1.7 concludes the chapter.

1.2 Preprocessing

The netlist can contain parasitic resistors and capacitors which inhibit a correct
building block recognition. Therefore parasitic devices are replaced by short–
circuits and open–circuits as appropriate.

In addition, the source and drain assignment of MOSFETs in the netlist does
not always match the actual assignment during operation. The actual assignment is
required for correct building block recognition. It is determined by traversing the
netlist from Vdd– to Vss–nets nets and vice versa.

1.3 Building Block Recognition

In the following, an algorithm is presented that recognizes basic building blocks,
e.g., simple current mirrors (in analog circuits) and inverters (in digital circuits).
This is done by comparing the circuit netlist to a given library of building blocks.
A library for analog, digital and mixed–signal circuits is presented after some for-
mal definitions. Next, a dominance relation is presented, which is used to resolve
recognition ambiguities. Finally, the recognition algorithm is discussed.

A circuit consists of several devices such as MOSFETs. The set of all devices
is D . Each device d ∈ D has several attributes associated with it. We denote these
attributes using a pseudo object–oriented notation, e.g., d.a is attribute a of device d.
A device d has the following attributes:

type t The type d.t ∈ TD = {trans, res,cap, . . .} describes whether the device
is a transistor (trans), a resistor (res), a capacitor (cap), etc.

subtype s The subtype d.s ∈ {none,nmos,pmos} is used to distinguish between
NMOS and PMOS transistors.
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Fig. 1.2 Stack chain con-
sisting of three stacks

st22
st12

st32

N2

N1

N3

N4

pins p Pins are used to connect the device to nets. The set d.p lists the avail-
able pins, e.g., d.p = {gt,dn,sc} for a mosfet-transistor with gate (gt),
drain (dn) and source (sc).

Definition 1 (building block). A building block b∈B consists of several devices or
other building blocks, where B is the set of all building blocks. It has the following
associated attributes:

children c A tuple b.c ∈ (D ∪B)nc,s listing the included building blocks or de-
vices, where nc,s is the number of children.

type t A type b.t ∈ TB similar to the type defined for devices. The available
building block types depend on the used library.

subtype s A subtype b.s similar to the type defined for devices.
pins p A set of pins b.p similar to the type defined for devices.

Devices and building blocks connect to the nets n ∈ N of the circuit using their
pins.

Definition 2 (Connectivity function η)
The connectivity function η(x, p) ∈ N ,x ∈ (D ∪B), p ∈ x.p describes the con-
nectivity of a circuit. A device or building block x connects to a net n by pin p
iff n = η(x, p).

1.3.1 Analog, Mixed-Signal and Digital Building Block Library

The recognition algorithm is based on the building block library shown in Fig. 1.3.
The unshaded part covers analog building blocks, the gray shaded part covers digital
building blocks and the gray striped part covers building blocks used in analog and
digital circuits. The figure does not show the complete library of analog building
blocks, which can be found in [14].

The library is based on three different generic building blocks.

pair A pair consists of two building blocks or devices, e.g., a simple current
mirror or a stack.

array An array consists of n building blocks or devices connected in parallel, e.g.,
a diode transistor array.

chain A chain consists of pairs y1, y2 to yn, where two pairs yi, yi+1, i = 1 . . . (n− 1)
share one child. Figure 1.2 illustrates this for a stack chain consisting of
stacks st12 to st32. Stacks st12 and st22 share N2, stacks st22 and st32 share N3. A
chain can have a single child only.
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For a part of the building blocks, all children have the same subtype, i.e., they are
either all nmos or all pmos. For these building blocks only the nmos variant is
shown in Fig. 1.3. Examples are simple current mirror and stack. Other building
blocks consist of children with nmos and pmos type. Examples are logic gate and
pass–gate.

The library is organized into different hierarchy levels. Building blocks from one
hierarchy level are built out of building blocks from lower hierarchy levels. The low-
est hierarchy level, hierarchy level 0, is formed by the transistors from the netlist.
The overall number of hierarchy levels nL depends on the circuit and is automati-
cally determined by the recognition algorithm.

Hierarchy level 1 contains building blocks that group parallel transistors to-
gether. For example, a diode transistor array, consists of parallel diode connected
transistors.

Hierarchy level 2 contains the analog building blocks simple current mirror (scm),
voltage reference II (vrII), differential pair (dp) and level-shifter (ls). Simple current
mirror and level–shifter consist of a diode transistor array connected to a normal
transistor array. The other building blocks consist of normal transistor arrays only.
Stack, pass–gate and cross–coupled pair can be used for analog as well as digital
circuits. Logic gate, logic array and stack chain are useful for digital circuits only.
The current hierarchy level is used as index for stack, logic gate, logic array and
stack chain because they are repeated on higher hierarchy levels. The gate pins of
the logic gate can be connected to an inverter or independently controlled.

Hierarchy Level 3 contains a stack chain which is needed for digital circuits only.
It is constructed from multiple stack building blocks that overlap at one transistor.

The analog part of hierarchy level 4 contains the cascode current mirror, which is
formed from a simple current mirror and a level–shifter as well as the wide–swing
current mirror, which is formed from a voltage reference II and a stack from level 2.
For digital circuits the tristate base block is defined. It consists of a pass–gate and a
logic array.

For all even hierarchy levels starting from 4 up to nL digital building blocks are
defined recursively. A logic array on hierarchy level k = 4,6, . . . can be formed by
stack chains from lower hierarchy levels as well as normal transistor arrays. At
least one of the stack chains must be from hierarchy level k − 1. The same prin-
ciple applies to stacks which are formed out of logic arrays and normal transistor
arrays. A logic gate combines a logic array, stack chain or normal transistor array
with PMOS–subtype and a logic array, stack chain or normal transistor array with
NMOS–subtype.

All odd hierarchy levels starting from 5 up to nL −1 contain a stack chain which
is formed from stacks from the hierarchy level before.

The analog part of hierarchy level 6 defines the differential stage, consisting of a
current mirror and a differential pair. In addition to the recursively defined building
blocks, the digital part of hierarchy level 6 contains the tristate control block, which
consists of two tristate base blocks. It is needed to handle one type of tristate buffers
correctly.
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0 0

1 1

22

3

4 k = 4, 6 ...

digitalanalog

3

k = 5, 7 ...

6

5

nL

(k even)

(k odd)

(nL even)
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level-shifter
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cascode
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)
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Fig. 1.3 Library for building block recognition of analog, mixed-signal and digital circuits.
The analog part shows a subset from the library presented in [14].
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la1
4

la1
2

st12/sc1
3

st14/sc1
5

lg1
6

st22
P3

P2

N1

N2

N3

P1

N1 N2 N3 P1 P2 P3

nta1 nta2 nta3 nta4 nta5 nta6

la1
2st12 st22

sc1
3

la1
4 st14

sc1
5

lg1
6

Fig. 1.4 And-nor gate [18] with recognized building blocks

Figure 1.4 illustrates how this library can be used to recognize the building blocks
of the and-nor gate from [18]. First, normal transistor arrays nta1 to nta6 are recog-
nized for every transistor in the circuit. After that, a stack st12 covering N1, N2 and
a logic array la1

2 covering P1, P2 are found. For the third hierarchy level a stack
chain (sc1

3) is formed out of stack st12. In hierarchy level four a logic array (la1
4) and a

stack (st14) are recognized. Stack st14 becomes part of a stack chain sc1
5 on hierarchy

level five. Finally, logic gate lg1
6 is recognized on hierarchy level six.

Comparing the netlist to the library does not unambiguously yield this result.
Additional building blocks can be recognized, e.g., the stack st22. Normal transistor
array nta5 would be part of la1

2 and st22 at the same time. In the following, we will
show how such ambiguities can be resolved by determining a dominating building
block, i.e., one building block is kept and one is removed.

1.3.2 Recognition Conflicts and Their Resolution

For pairs used in analog circuits an ambiguity resolution concept was presented
by [14]. An enhanced version, capable of handling chains and arrays as well, is
described in the following.

For ambiguity resolution two building blocks are considered together with their
transitive children. The set of transitive children C�(x) of a building block x contains
the children x.c of x as well as all elements of their sets of transitive children, i.e.,

C�(x) =

{⋃
y∈x.c

({y}∪C�(y)
)

x ∈ B
/0 x ∈ D

. (1.1)

Set Ci(x) is the set of transitive children limited to the i-th child x.ci of x, i.e.,

Ci(x) = {x.ci}∪C�(x.ci) (1.2)

The ambiguity resolution is based on a dominance graph (Fig. 1.5).
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(lgnL
,�)

(stnL
,1)(stnL

,2)

(lanL
,�)

(pg,�)

digital

Fig. 1.5 Dominance graph for the library shown in Fig. 1.3. The analog part is based on [14].

Definition 3 (Dominance Graph). A dominance graph GD is a directed graph
GD = (NGD ,EGD). The nodes are pairs (t, i) ∈ NGD = TB ×{1,2,�}, where t is a
building block type and i refers to one of the set of transitive children defined above.
The edges are pairs of nodes, i.e., EGD = N2

GD
.

Definition 4 (Dominance). A building block x1 dominates a building block x2 iff

∃(i, j)∈{1,2,�}2

(
Ci(x1)∩Cj(x2) �= /0

)∧ reachableGD((x2.t, j),(x1.t, i)) . (1.3)

The first part checks if there is a common transitive child using one of the sets C1, C2

and C�. The second part checks if the node in the dominance graph corresponding
to x2 is reachable from the node corresponding to x1. Function reachableGD(μ ,ν) is
true if node μ is reachable in GD from node ν . This definition is based on [14].

The dominance graph for the building block library for analog, digital and mixed–
signal circuits is shown in Fig. 1.5. The left, non–shaded part handles conflicts be-
tween analog building blocks. It is based on the graph presented in [14]. The right,
gray shaded part handles conflicts between digital building blocks. It has to consider
the recursive nature of the library. Inside each hierarchy level the following holds:
Transistors that are part of a logic array must not be part of a stack. The upper
transistor of a stack must not be part of a logic gate. In the example (Fig. 1.4) this
prevents recognition of a false logic gate consisting of N1 and P3. A logic gate from
a higher hierarchy level will always dominate logic gates from a lower hierarchy
level. This means, in case that multiple logic gates are detected only the largest one
is kept. This includes transitive relations, e.g., a stack from level 4 will dominate a
logic gate from level 2. In case a transistor is part of a pass–gate it must not be part
of another building block.
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i ← 0; B ← ∅
i ← i + 1; Bi ← ∅
for t ∈ Li

pair array chain

t is a

Bi ← Bi ∪ findPairs(t) Bi ← Bi ∪ findArrays(t) Bi ← Bi ∪ findChains(t)
B ← resolveConflicts(B ∪ Bi )

until
(
(B ∩ Bi ) = ∅

)
∧
(
i = 6, 8, ...

)
B ← removeBlocksWithoutFunction(B)

Fig. 1.6 Building block recognition algorithm

This allows to resolve the conflict from the example (Fig. 1.4). Building block
nta5 is a child of la1

2 and second child of st22, i.e., C�(la1
2)∩C2(st22) = {P2,nta5}.

Since node (st2,2) is reachable from (la2,�), logic array la1
2 dominates stack st22.

1.3.3 Recognition Algorithm

The recognition algorithm for analog, digital and mixed-signal circuits is shown in
Fig. 1.6. It is based on the algorithm presented in [14]. It was enhanced to handle
the recursive library, recognize arrays and chains as well as recognize pairs faster.

The algorithm iterates over all hierarchy levels Li ⊆ TB , i = 1,2 . . .nL of the
library. In each iteration, pairs, arrays and chains are found by calling functions
findPairs, findArrays and findChains, respectively. These functions are discussed
below. All building blocks recognized for the current hierarchy level are collected
in set Bi. Conflicts are resolved in each hierarchy level, leading to an update of the
overall set of recognized building blocks B. In contrast to a conflict resolution at the
very end as suggested by [14], this has the benefit that the overall number of build-
ing blocks is kept low. Consequently, less components must be considered during
subsequent steps. According to Definition 4, it is sufficient to check for each new
building block x1 ∈ Bi,

• if it is dominated by some other building block x2 ∈ Bi ∪B, or,
• if it dominates some other building block x2 ∈ Bi ∪B.

The outer loop ends if the following two conditions are met,

• no new building blocks were found in this iteration or all found building blocks
were dominated, and,

• the current hierarchy level number is even and greater or equal to six.

Finally, building blocks are removed that do not have a function if they are not part
of a bigger building block. For example, voltage references II, which are not part of
a wide–swing cascode current mirror, are removed.
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Fig. 1.7 Function findPairs findPairs(t)

B ← ∅
X ← candidatePairs(t)

for (c1, c2) ∈ {(c1, c2) ∈ X |rt (c1, c2)}
B ← B ∪ {newPair(t , c1, c2)}

return B

1.3.3.1 Finding Pairs

Function findPairs is shown in Fig. 1.7. First a set of candidate pairs X ⊆ (B∪D)2

is determined. Below, this will be described in more detail. Next, a rule function rt

is evaluated for each of these candidate pairs. In case the function is true for a pair, a
new pair is created and added to the set of found pairs, which is returned in the end.
The rule function rt is specific for each pair type t. It can contain conditions about
type, subtype, required and forbidden connections as well as existence of parents.
For example, the rule function rstk

(x1,x2) for stack type stk on level k contains the
following conditions,

(x1.t,x2.t) ∈
{
(lak−2,nta), (lak−2, la2), · · ·)
(nta, lak−2), (la2, lak−2), · · ·)

}
(type)

∧ x1.s = x2.s (same subtype)
∧ η(x1,dn) = η(x2,sc) (required connection)
∧ η(x1,sc) �= η(x2,dn) (forbidden connections)
∧ parents(x1) = parents(x2) = /0 (no parents)

(1.4)

The type condition requires one component to be a logic array from hierarchy
level k− 2. The other component can either be a normal transistor array or another
logic array from any hierarchy level. Both components must have the same subtype.
The required connection condition requires the drain of the first building block to
connect to the source of the second building block. The forbidden connection con-
dition forbids a connection between source of the first building block and drain of
the second building block. Both components must have no parents.

Runtime of findPairs is dependent on the number of candidate pairs X . This num-
ber can be kept low by including some of above conditions in the candidate pair
computation. The authors of [14] use all pairs of devices and building blocks that
are of correct types. The authors of [8] use all pairs that are at least connected by one
net. We combine both methods. For the stack at level k candidate set X is computed
as follows,

X1(n) =
{

x1 ∈ D ∪B|x1.t ∈ {nta, la2, la4, . . .})∧η(x1,dn) = n} (1.5a)

X2(n) =
{

x2 ∈ D ∪B|x2.t ∈ {nta, la2, la4, . . .})∧η(x2,sc) = n} (1.5b)

X =
⋃

n∈N

X1(n)×X2(n) (1.5c)
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findArrays(t)

B ← ∅
X ← {c ∈ D ∪ B|rt (c)}
K ← ∪x∈X{kt (c)}
for κ ∈ K

Xκ ← {x ∈ X |kt (x) = κ}
|Xκ| ≥ t .m

true false
B ← B ∪ {newArray(t , Xκ)}

return B

findChains(t)

B ← ∅
X ← {c ∈ D ∪ B|rt (c)}
y0 ∈ {x ∈ X |γ−

X (x) 
= 1}
y ← unbranchedChain(x0, X )

B ← B ∪ {newChain(t , y )}
return B

Fig. 1.8 Function findArrays Fig. 1.9 Function findChains

Functions X1(n) and X2(n) return candidates for the first and second component
for a specific net n ∈ N , respectively. Pairs are then computed for each net n ∈ N
by evaluating X1(n) and X2(n). The resulting set X only contains pairs where the
connection condition and parts of the type condition are fulfilled.

1.3.3.2 Finding Arrays

The algorithm to find arrays is depicted in Fig. 1.8. First, the algorithm creates a
set X of candidate children by evaluating a rule function rt , which is specific for
each array type t. It can consist of conditions about type, subtype, connectivity and
existance of parents. The rule function rdta(x) for a diode transistor array contains
the following conditions:

x.t = trans︸ ︷︷ ︸
(type)

∧ η(x,gt) = η(x,dn)︸ ︷︷ ︸
(required connection)

∧ η(x,dn) �= η(x,sc)︸ ︷︷ ︸
(forbidden connection)

(1.6)

It enforces type transistor and a gate drain connection. It forbids a connection be-
tween drain and source. The key function kt maps each component in X to a tuple of
nets, such that components connected in parallel get the same key. The key function
kdta for a diode transistor array is,

kdta(x) = (η(x,dn),η(x,sc)). (1.7)

This means, for a diode transistor array all transistors are grouped together that
connect to the same net at their drain pins and their source pins. If more than a
minimum number t.m building blocks are connected in parallel then a new array
is created. For the diode transistor array dta.m = 1, i.e., an array is always created.
Finally, the set B of new arrays is returned.
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1.3.3.3 Finding Chains

Function findChains is shown in Fig. 1.9. First, the algorithm computes a set X
of candidate children using a rule function rt , which is specific for each chain
type t. It can use the conditions described for arrays. All candidate children must be
pairs. The rule function rsck(x) for a stack chain on level k contains the following
conditions:

x.t = stk−1 . (1.8)

It requires x to be a stack on level k− 1.
Next, all tuples y = (y0,y1, . . .ylast) with the following properties are found:

• γ−(y0) = |{x ∈ X |x.c2 = y0.c1}| �= 1, i.e., more than one or no candidate in X
share the second child with y0.

• yi.c2 = yi+1.c1 for yi �= ylast, i.e., the second child of each building block yi is
the first child of the next building block yi+1.

• |{x ∈ X |x.c1 = ylast.c2}| �= 1, i.e., the chain can not be continued beyond ylast.

Finally, a new chain is created for each y and returned in B.

1.3.3.4 Discussion

The analog building block recognition described in [14] is included in this algo-
rithm. It corresponds to the analog part of the library in Fig. 1.3 and the dominance
graph in Fig. 1.5. The algorithm corresponds to the algorithm of Fig. 1.6 when
all building blocks are pairs. Consequently, the results obtained for the algorithm
of [14] can be transfered to the new algorithm.

The authors of [1] suggested to recognize simple current mirrors and level-
shifters by recognizing diode connected transistors first. Application of the prin-
ciple from [1] to the library from [14] resulted in the new hierarchy level 1 shown
in Fig. 1.3. This has the advantage of faster recognition of pairs because less rules
must be evaluated.

1.4 Structural Signal Flow Analysis

After applying the building block algorithm from the previous section to a circuit,
basic building blocks such as pass-gates or simple current mirrors are known. Fig-
ure 1.10 illustrates this for a latch from [19]. It consists of logic gates lg1

2 to lg3
2

as well as pass–gates pg1
2 and pg2

2. This information is now used to generate the
Enhanced Structural Signal Flow Graph [6] (ESFG) of the circuit, which combines
qualitative behavioral and structural information. This graph is then used to assign
a direction to each pass–gate, partition the circuit into an analog and digital part and
to identify feedback loops.
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Fig. 1.10 Latch [19] with recognized
building blocks

Fig. 1.11 Generated ESFG

1.4.1 Generation

An ESFG [6] is a directed graph. The nodes of the graph are formed by the nets
of the circuit. An edge models a qualitative influence from one net to another. An
edge from net ni to n j means that a change of a branch current or voltage of ni

causes a change of a branch current or voltage of n j. The relation between edges and
the recognized building blocks is modeled by some edge attributes. Only top–level
building blocks without parents are considered. The ESFG is generated as follows.

• For a logic gate edges from each input to the output are generated.
• A pass–gate generates an undirected edge from drain to source. Directed edges

are generated from both gates to drain and source. These edges are called control
edges.

• For analog building blocks the generation is described in [6, 7]. For example, for
current mirrors one edge from the input to the output is generated.

• For each port of the circuit a port node is generated and connected to the corre-
sponding net.

For the latch example this is illustrated by Fig. 1.11. Logic gates lg1
2 to lg3

2 are
represented by edges e1 to e3. Pass–gate pg1 is represented by undirected edge e10

and control edges e11 to e14. Pass–gate pg2 is represented by edges e20 to e24. Circuit
ports E , D, Q, Q are represented by port nodes.

1.4.2 Assignment of Pass–Gate Directions

After the generation step, pass–gates are represented as undirected edges, e.g.,
edge e10 in Fig. 1.11. In reality pass–gates are only used in one direction. The prob-
lem is related to the problem of determining the signal flow direction of transistors
in switch–level simulation [2]. However, only a small part of the ESFG edges is
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undirected in our case, which allows to used a different approach which is described
in the following.

Assume e is an undirected edge connecting nodes ν and μ . It is replaced by a
directed edge from μ to ν , if the following conditions hold simultaneously.

• An output node is reachable from ν without traversing e, and,
• no edge representing a logic gate ends at ν .

Simultaneously with the assignment, edges pointing from the control inputs of the
pass–gate to μ are removed.

For the undirected edge e10, connecting nD and nQ in the example of Fig. 1.11,
output node nQ is reachable from nQ but not from nD without traversing edge e10.
Consequently the edge points from nD to nQ. The undirected edge e20 between n2

and nQ is found to point from n2 to nQ. The control edges are removed accord-
ingly (Fig. 1.12).

In some cases, it is not possible to assign directions to all pass–gates at once.
In these cases above conditions are repeatedly evaluated for all pass–gates without
assigned direction. In each iteration at least one pass–gate direction is assigned. The
algorithm needs npg iterations at maximum, where npg is the number of pass–gates.

The computation of the logic functions (see Section 1.5.1) for building blocks
can be done before this step. In this case, it can be checked whether the output of a
logic gate can be in high impedance state.

1.4.3 Analog / Digital Partitioning

For further processing, the ESFG must be partitioned into an analog and digital
part. Therefore a signal type is assigned to each node. This signal type can be either
unknown, analog or digital. The signal type for each node is determined based on
the edges of the graph and the building blocks they represent. For each building
block type a specific set of conditions for the connected nodes exists. For example,
input and output of a current mirror must be of type analog. In addition, the user can
specify the signal type of inputs and outputs of the circuit. Overall, we get a set of
conditions forming a constraint satisfaction problem which is solved by a constraint
programming method, e.g., [17].

nD nQ

nQ

nE na nb
Q

Q

E

D

nD nQ

ñQ

nE na

nb

ñ′
Q

Q

Q

E

D

Q
′

Fig. 1.12 ESFG after assignment of pass-
gate directions

Fig. 1.13 Temporal ESFG
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In some cases, this leads to conflicting requirements for a node, i.e., it must be
analog and digital at the same time. This happens in case an analog building block
was wrongfully recognized in the digital part or vice versa. Such conflicts are re-
solved by back–annotating the signal type to the nets of the circuit. Next, the build-
ing block recognition is rerun using additional rules for the signal types at the pins
of a building block.

For a pure analog or digital circuit this step has no effect. Therefore the ESFG in
Fig. 1.12 does not change.

1.4.4 Transformation to Temporal ESFG

In case of sequential circuits such as latches, the ESFG contains feedback loops. In
order to compute the logic function of such circuits, a temporal ESFG is introduced,
which is an acyclic ESFG and adds a time concept.

Definition 5 (Temporal ESFG). A temporal ESFG is an acyclic ESFG. It refers to a
virtual normalized clock with clock period 1 that is at least twice the
real clock frequency, i.e., the real clock can be sampled. Each node gets an addi-
tional clock cycle attribute, indicating if the node belongs to the current or a previous
clock cycle.

The transformation from the ESFG to the temporal ESFG is described in the follow-
ing. All loops of the ESFG are computed by finding strongly connected components
in the graph. All nodes, where an edge to a node outside the loop starts, are called
output nodes of the loop. All nodes, where an edge from a node outside the loop
ends, are called input nodes of the loop. The feedback path of a loop is the path
from an output node to an input node that does not contain any other output or input
node of the loop. Some node ns of this path, which is not an input node of the loop,
is then selected as node to represent the state of the loop. This node is split up into
two nodes ñs and ñ′s, which represent the state at the current and previous time step,
respectively. All edges going from ns to a node inside the loop are assigned to ñ′s.
All other edges are assigned to ñs. In addition, an output port node corresponding to
ñs and an input port node corresponding to ñ′s is created.

Figure 1.13 illustrates this for the example. The ESFG (Fig. 1.12) contains a loop
consisting of nQ, nQ and nb. Node nQ is an input node of the loop and nodes nQ, nQ
are output nodes. The feedback path is nQ,nb,nQ. Node nQ is split up into node ñQ

and ñ′
Q

. Input port Q
′
is created. The resulting temporal ESFG is shown in Fig. 1.13.

1.5 Logic Function Extraction

Based on the temporal ESFG the logic function of the circuit can now be computed.
This is done in two steps. First, the logic function for all recognized building blocks
is computed. Afterwards, the logic function for the complete circuit is determined.
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Unless denoted otherwise, a four valued logic [4] with 0, 1, Z (high impedance),
U (unknown) is used in the following. All logic functions are represented using
ROBDDs [3].

1.5.1 Computation of Logic Function for Building Blocks

In this step, the logic function of single logic gates is determined. For CMOS cir-
cuits this requires in general to evaluate the serial and parallel connections of the
pull–up and pull–down network [19]. Algorithmic implementations can be found
in, e.g., [4, 5, 9, 11, 20]. Our approach builds on the hierarchical recognition result
computed by the algorithm presented in Sec. 1.3.

Table 1.1 lists the logic function associated with each building block from the
library for digital circuits. It uses the operators ⊕ and �, which are defined as
follows.

a⊕ b :⇔
⎧⎨
⎩

a (a = b)∨ (b = Z)
b a = Z
U otherwise

a � b :⇔
⎧⎨
⎩

a b =U
b a =U

a⊕ b otherwise
(1.9)

The operator ⊕ is the “merge” operator from [4]. The result is a defined logic state,
i.e., zero or one, if a and b have the same value or one is high impedance. If both
are high impedance the result is “Z”, otherwise the result state is undefined. The
operator � considers in addition, that undefined states can be canceled out in case
of parallel connections, i.e., the result is a defined logic state in case a or b is 0 or 1
and the other one is undefined.

An NMOS transistor for example shows a logic “0” at the drain pin if the gate is
at logic “1” (i.e., vdd) and source is at logic “0”. The drain pin is at high impedance
state if the transistor is off. This is the case for “0” at the gate or “Z” at the source
pin. In all other cases the output is unknown (Table 1.1). The logic function for a
PMOS transistor is found analogously.

The logic function at the drain pin of a stack chain is formed out of the logic
functions f1 to fn of its children. The gate inputs of these children are described by
vectors g1 to gn. The overall logic function is the logic function fn with fn−1 substi-
tuted for the source variable. These substitutions are continued until f1 is reached.

The logic function at the output o of a logic gate are the logic functions of the p–
and the n–block combined by the ⊕ operator. This includes that the output becomes
high–impedance in case no block is on or unknown in case both blocks are on at the
same time.

The logic function of a logic array is the logic functions f1 to fn of the children
combined by the � operator. The logic function at the output o of a pass–gate is
equal to the input i in case the pass–gate is on, otherwise it is “Z”.
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Table 1.1 Logic functions for digital building blocks

n–transistor d

s
g

d = fn-t(g,s) =

⎧⎨
⎩

0 (g = 1)∧ (s = 0)
Z (g = 0)∨ (s = Z)
U otherwise

p–transistor d

s
g

d = fp-t(g,s) =

⎧⎨
⎩

1 (g = 0)∧ (s = 1)
Z (g = 1)∨ (s = Z)
U otherwise

stack chain

s
f1

f2

fn
d

g1

g2

gn

d = fsc([g1g2 · · ·gn],s)
= fn(gn, fn−1(gn−1, · · · f1(g1,s) · · ·))

logic gate

sn

fn

fp
sp

gn

gp
o

o= f ([gpgn],sp,sn) = fn(gn,sn)⊕ fp(gp,sp)

logic array

s
f1 f2 fn

d
g1 g2 gn

d = fla([g1g2 · · ·gn],s)
= f1(g1,s)� f2(g2,s)� · · · � fn(gn,s)

pass–gate
o

an

i

ap

o = f (i,ap,an) =

⎧⎨
⎩

i (an = 1)∧ (ap = 0)
Z (an = 0)∧ (ap = 1)
U otherwise

This is illustrated by the example shown in Fig. 1.14. The logic function for the
complete gate,

fNAND([a b]) = fN2(a, fN1 (b,0))︸ ︷︷ ︸
fN([a,b],0)

⊕( fP1(a,1)� fP2(b,1)
)

︸ ︷︷ ︸
fP([a,b],1)

(1.10)

is formed by the logic function fP of the logic array consisting of P1 and P2 as well
as the logic function fN of the stack chain consisting of N1 and N2. Logic function fP

is formed by the logic functions of P1 and P2 and logic function fN is formed by the
logic functions of N1 and N2, yielding

fN([a b],0) =

⎧⎨
⎩

0 (a = 1)∧ (b = 1)
Z (a = 0)∨ (b = 0)
U otherwise

fP([a b],1) =

⎧⎨
⎩

1 (a = 0)∨ (b = 0)
Z (a = 1)∧ (b = 1)
U otherwise

.

(1.11)

Logic function fN represents the output of the pull–down network, which is the drain
of N1. It is vss (“0”) in case both inputs are one, if both inputs are zero it is high-
impedance. In case one input is high–impedance or unknown fN is unknown. Logic
function fP represents the output of the pull–up network at point x1 in Fig. 1.14.

This results in the following logic function for the complete gate,

fNAND([a b]) =

⎧⎨
⎩

0 (a = 1)∧ (b = 1)
1 (a = 0)∨ (b = 0)

U otherwise
, (1.12)
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which is the logic function of a NAND gate. The unknown case occurs if one of the
inputs is in unknown or high–impedance state. Since the NAND gate is no tristate
gate, the overall logic function does not include a high–impedance case.

1.5.2 Computation of Overall Logic Function

The overall logic function is computed by assigning logic variables to each node.
We use a temporal logic, i.e., the logic variables refer to different time steps. Next,
the temporal ESFG is traversed in topological order, i.e., each node in the graph is
visited after all nodes it depends on. During this traversal, the logic functions are
substituted into each other. In case two building blocks (e.g., pass gates) have out-
puts o1, o2 on the same node, the logic function for the node is calculated as o1 ⊕ o2.
It is assumed, that the inputs of the circuit are in a defined logic state, i.e., they are
not “U” or “Z”.

For the example circuit from Fig. 1.10 and the temporal ESFG from Fig. 1.13
the assigned logic variables are shown in Fig. 1.15. Logic variables a(t), b(t), D(t),
E(t), Q(t) and Q(t) refer to the current time step. Logic variable Q(t − 1) refers to
the previous time step. It holds.

a(t) =

{
0 E(t) = 1
1 E(t) = 0

b(t) =

⎧⎨
⎩

0 Q(t − 1) = 1
1 Q(t − 1) = 0

U otherwise
(1.13)

Q(t) =

⎧⎨
⎩

0
[
(E(t) = 1)∧ (D(t) = 0)

]∨ [(E(t) = 0)∧ (Q(t − 1) = 1)
]

1
[
(E(t) = 1)∧ (D(t) = 1)

]∨ [(E(t) = 0)∧ (Q(t − 1) = 0)
]

U otherwise
(1.14)

Q(t) =

⎧⎨
⎩

0
[
(E(t) = 1)∧ (D(t) = 1)

]∨ [(E(t) = 0)∧ (Q(t − 1) = 0)
]

1
[
(E(t) = 1)∧ (D(t) = 0)

]∨ [(E(t) = 0)∧ (Q(t − 1) = 1)
]

U otherwise
(1.15)

Logic function a(t) can only become “0” or “1” because input E(t) is assumed to
be in a defined logic state. No such assumption is made for Q(t −1). Consequently,
b(t) can become unknown in case Q(t − 1) is unknown or high-impedance. Overall

o
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P2
P1

N1

N2

x1

D(t)
D(t)

Q(t)

Q(t)

Q(t)

Q(t)

E(t)
E(t)

a(t)
b(t)

Q(t − 1)Q(t − 1)

Fig. 1.14 NAND gate Fig. 1.15 ESFG with assigned logic vari-
ables
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Table 1.2 Recognition results for different standard cell libraries

Library No. Cells Analysis Time Coverage
Lib 1 32 1 sec. 100.0%
Lib 2 134 4 sec. 100.0%
Lib 3 – Tech 1 ∼ 600 18 sec. 97.6%
Lib 3 – Tech 2 ∼ 550 13 sec. 99.6%
Lib 3 – Tech 3 ∼ 700 27 sec. 99.1%
Lib 4 ∼ 850 37 sec. 95.2%

logic function Q(t) is input D(t) in case E(t) is set otherwise it is the inversion of
Q(t − 1). Logic function Q(t) is the inversion of Q(t). This corresponds to a latch.

1.6 Application Examples

In the following application to digital standard cell libraries and mixed-signal cir-
cuits is discussed including experimental results.

1.6.1 Description Generation for Digital Standard Cell Libraries

The approach is used to automatically generate a library description for digital stan-
dard cell libraries. The description includes a decomposition into pass–gates and
logic gates, the ESFG, the logic function of the standard cell and a table listing
possible single input switching events together with the possible values at the other
inputs and the resulting output behavior. These events are a necessary input for au-
tomatic timing characterization of digital standard cell libraries. The decomposition
into logic gates and pass–gates corresponds to a decomposition of multi–stage gates
into single–stage gates. This is a required input for the current–source modeling
approach of [10] and the aging analysis approach of [12].

In the experiment, the building block recognition with the digital part of the li-
brary is used as well as the structural signal flow analysis and the logic function
extraction. Additional post–processing is used to generate the table of all possible
single input switching events.

We performed this analysis for 4 different standard cell libraries (Table 1.2). Li-
brary 1 is the standard cell library included in the FreePDK presented in [18]. Li-
brary 2 is the Nangate open cell library. Library 3 is an industrial standard cell
library which was available for three different technology nodes. Library 4 is an
industrial standard cell library, too.

Table 1.2 shows that these libraries contained between 30 and 850 cells. In all
cases the analysis for the complete library took less than 1 minute. All runtimes
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were normalized to an Intel R© Xeon R© 2.33 GHz computer with 4 GB RAM running
Ubuntu and using 4 of 8 cores in parallel.

Column four of Table 1.2 gives the recognition coverage of the presented method.
For libraries 1 and 2 all cells were recognized correctly. For libraries 3 and 4, the
building block analysis was not able to fully decompose all cells into pass–gates and
logic gates. Typically, these cells were not designed according to standard CMOS
principles. However, these cells can be included by extending the library accord-
ingly. Overall, more than 95% of all cells were correctly recognized for the indus-
trial libraries.

1.6.2 Structural Analysis of Mixed-Signal Circuits

The new mixed–signal capabilities of the structural analysis were evaluated using a
voltage–controlled ring oscillator (Fig. 1.16) and a charge–pump (Fig. 1.18).

The voltage–controlled ring oscillator generates a digital clock signal. The fre-
quency of the clock signal can be adjusted by the analog control voltage applied at
input c. The building block recognition computed 4 NMOS simple current mirrors,
3 PMOS simple current mirrors and 5 logic gates on level 2, i.e., inverter. It is not
possible to get the correct recognition result by computing analog and digital build-
ing blocks independently: A logic gate on level 4 consisting of N3, N4, P3, P4 would
be found, which would contradict the current mirrors formed by N1,N4 and P1,P2.

Fig. 1.17 shows the corresponding ESFG of the voltage–controlled ring oscilla-
tor. The partitioning into analog and digital part is symbolized by the node shape.
The analog control circuitry as well as the digital feedback loop are clearly visible.

The charge pump shown in Fig. 1.18 is based on [15]. The output is usually
connected to the loop filter of a PLL. Digital inputs D and U control the direction
of the output current. The building block recognition computed 2 NMOS simple
current mirrors, a PMOS simple current mirror and two logic gates. Transistors N6

and N7 as well as P5 and P6 would match a differential pair. These differential pairs
were dropped because they connect to digital inputs D and U . Transistors N7 and P6

would form a logic gate, which was dropped because output o is specified as analog.
The corresponding ESFG is shown in Fig. 1.19.

Fig. 1.16 Voltage–
controlled ring oscillator
with recognized building
blocks
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Fig. 1.17 ESFG of voltage–
controlled ring oscillator
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Fig. 1.18 Charge pump with recognized
building blocks

Fig. 1.19 ESFG of the charge pump

1.7 Conclusion

This chapter presented a new method for the automatic structural and functional
analysis of analog, digital and mixed-signal circuits. Its first step is the recognition
of building blocks such as simple current mirrors and logic gates. These results are
then used to generate an Enhanced Structural Signal Flow Graph (ESFG). Based
on that, true pass-gate directions are computed and feedback paths are broken up.
Finally, the logic function is determined for the digital circuit parts.

Experimental results show successful application of the algorithm to several dig-
ital standard cell libraries with more than 95% of correctly recognized cells. Struc-
tural analysis of mixed-signal circuits was demonstrated using a voltage-controlled
ring oscillator and a charge pump.
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Chapter 2 
Efficient Synthesis Methods for High-Frequency 
Integrated Passive Components and Amplifiers 

Bo Liu*and Georges Gielen  

Abstract. Existing design automation methods for RF ICs and microwave passive 
components often rely on parasitic-aware lumped equivalent circuit models. That 
framework is difficult to apply to synthesis tasks at high frequencies (e.g. 40GHz 
and above) due to the distributed effect. When directly embedding the computa-
tionally expensive electromagnetic (EM) simulations in the optimization loop, a 
too long synthesis time results. This chapter presents a new method for high-
frequency integrated passive component synthesis, called Memetic Machine 
Learning-based Differential Evolution (MMLDE), and the first method for  
mm-wave integrated circuit synthesis, called Efficient Machine Learning-based 
Differential Evolution (EMLDE), both addressing the problem of obtaining highly 
optimized design solutions in a very practical time. The common idea of these two 
methods is the on-line surrogate model assisted evolutionary algorithm (SAEA), 
where a computationally cheap surrogate model is constructed adaptively in the 
optimization process to replace expensive EM simulations. The differences be-
tween the two algorithms are that a memetic SAEA is built to enhance the optimi-
zation ability and efficiency in MMLDE, while a decomposition method is used to 
address the “curse of dimensionality” of SAEA in EMLDE. Experimental results 
show the effectiveness and the high efficiency obtainable with MMLDE and 
EMLDE. 

2.1   Introduction 

In recent years, design methodologies for high-frequency and mm-wave circuits 
have attracted a lot of attention. In particular, research and applications on RF 
building blocks for 40 GHz to 120 GHz and beyond are increasing drastically [1]. 
Existing RF IC synthesis methodologies, however, focus on low-GHz cases [2,3]. 
Even till now, the synthesis methodologies for mm-wave frequencies are still  
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lacking. Designers rely on experience and simulation verifications when designing 
these circuits. Due to the high-performance and tightening time-to-market re-
quirements, this “experience and trial” method or local optimization is often not 
good enough.  

The reason why existing synthesis methods cannot be extended to mm-wave 
frequencies is that they all rely on parasitic-aware equivalent circuit models for 
passive components [2,3,4]. Due to the distributed effects, however, an accurate 
equivalent circuit model is difficult to find at mm-wave frequencies. The solution 
is to include electromagnetic (EM) simulation based on the actual layout structure 
in the optimization loop. However, EM simulation is computationally very expen-
sive. When combining it directly with techniques like evolutionary computation 
(EC) [5], like at low frequencies, high-quality solutions can be obtained, but the 
time consumption is extremely large. For example, the synthesis of a transformer 
typically needs more than 20 hours, and the synthesis of a linear amplifier needs 
about 10 days. This is not practical for real-world applications. 

In this chapter, efficient synthesis method for mm-wave-frequency passive 
components and linear amplifiers will be introduced. The Memetic Machine 
Learning-based Differential Evolution (MMLDE) method [6] for the synthesis of 
integrated passive components will briefly be introduced first. The key idea of 
MMLDE is the on-line surrogate model-based memetic evolutionary optimization 
mechanism, whose training data are generated adaptively in the optimization 
process. By using the Gaussian Process with the expected improvement prescreen-
ing method and an artificial neural network with the prediction value in the pro-
posed search mechanism, surrogate models are constructed on-line to predict the 
performances. Hence, the computationally expensive EM simulations are only 
used in the necessary part of the design space, which is guided by the prediction 
and prescreening methods. Compared with directly using EC algorithms, MMLDE 
can obtain comparable results, and has approximately a tenfold improvement in 
computational efficiency. The Efficient Machine Learning-based Differential Evo-
lution (EMLDE) method [7] for the synthesis of mm-wave linear amplifiers will 
then be elaborated next. A decomposition method is used, which separates the de-
sign variables that require expensive EM simulations and the variables that only 
need cheap S-parameter circuit simulations. Hence, a low-dimensional but more 
complex expensive optimization problem is generated. By the proposed core algo-
rithm integrating adaptive population generation, naive Bayes classification, 
Gaussian process and differential evolution, the generated low-dimensional ex-
pensive optimization problem can be solved efficiently (thanks to the on-line sur-
rogate model), and global search  can be achieved (thanks to the evolutionary 
computation algorithm). A 100GHz three-stage differential amplifier in a 90nm 
CMOS technology is shown as an example. The power gain reaches 10dB with 
more than 20GHz bandwidth. The synthesis costs only 25 hours, having a compa-
rable result and a 9 times speed enhancement compared with directly using the 
EM simulator in combination with a global optimization algorithm. 

The remainder of this chapter is organized as follows. Section 2.2 reviews the 
existing works for RF IC synthesis, and motivates the construction of the EMLDE 
algorithm. Section 2.3 introduces the basic mathematical and computational  
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intelligence techniques used in this chapter. Section 2.4 briefly introduces the 
MMLDE method as a first step for EMLDE. Section 2.5 elaborates the EMLDE 
method. The experimental verifications are in Section 2.6. Section 2.7 concludes 
the chapter.  

2.2   Review of Related Works and Challenges 

2.2.1   RF Integrated Circuit Synthesis 

Existing RF IC design automation methods focus on low-GHz synthesis  
[2-4,8-14] by employing lumped equivalent circuit models for passive components 
(e.g. transformer, inductor). The framework of most of these methods is shown in 
Figure 2.1. Compared with the low-frequency analog circuit sizing flow, a key 
part is the generation of the parasitic-aware model of the passive components. In 
RF IC designs at low-GHz frequencies, a simple lumped model is often extracted 
to mimic the behavior of the key passive components (transformer, inductor).  
Regression methods are then used to fit the (calibrated) EM simulation  
results (S-parameters) to the parasitic-included equivalent circuit models. The 
generated passive component models are accurate at low-GHz frequencies and 
computationally efficient.  

To make the parasitic-aware model reliable in providing the correct perfor-
mances for different design parameters, a strictly enforced layout template is often 
necessary. [10,11] use the parasitic corner, rather than a strict layout template, to 
improve the flexibility of the generated layout for circuits below 10GHz, yielding 
good results. In the development of the optimization kernel, evolutionary algo-
rithms (EAs) are introduced in RF IC synthesis to achieve global search, getting 
very good results. [14] uses Particle Swarm Optimization (PSO) and [13] intro-
duces the non-dominated genetic algorithm (NSGA) to RF IC synthesis in order to 
achieve multi-objective optimization. 
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Fig. 2.1 Framework of parasitic-aware optimization for RF ICs (from [4]) 
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Parasitic-aware lumped equivalent circuit models for passive components that 
accurately match the EM simulation results are difficult to find at frequencies be-
tween say 40GHz and above 100GHz due to the distributed effects at these mm-
wave frequencies [6]. Hence, when employing lumped equivalent circuit models, 
available RF integrated circuit design automation methods are limited to low-GHz 
instances. Because the speed enhancement method for RF IC synthesis (using 
lumped models) cannot be extended to mm-wave integrated circuit synthesis, and 
because directly including the EM simulations in each performance evaluation is 
too CPU time intensive, no good efficient method for mm-wave integrated circuit 
synthesis exists today. The only way left to mm-wave circuit designers is the “ex-
perience and simulation verification” method, which is at odds with today’s high-
performance and tightening time-to-market requirements.  

To summarize, the goal of this chapter is to fill the blank of efficient automated 
design of mm-wave-frequency integrated passive components and integrated cir-
cuits (linear amplifiers as an instance), achieving good accuracy while knowing an 
acceptable CPU time. 

2.3   Basic Computational Intelligence Techniques  

The methods presented in this chapter are based on computational intelligence 
techniques, i.e. evolutionary computation and machine learning techniques in spe-
cific. In the following, we will introduce three basic techniques: the Differential 
Evolution (DE) algorithm, the Gaussian Process (GP) machine learning and the 
Naive Bayes Classifier (NBC), which are the fundamentals for the presented algo-
rithms MMLDE and EMLDE.  

2.3.1   Differential Evolution 

The DE algorithm [15] is selected as the search engine in MMLDE and EMLDE. 
The DE algorithm outperforms many other evolutionary computation (EC) algo-
rithms in terms of solution quality and convergence speed. DE uses a simple diffe-
rential operator to create new candidate solutions and a one-to-one competition 
scheme to greedily select new candidates.  

The i-th candidate solution in the d-dimensional search space at generation t 
can be represented as 

,1 ,2 ,( ) [ , , , ]i i i di t x x xx =   (2.1) 

At each generation t, the mutation and crossover operators are applied to the can-
didate solutions, and a new population arises. Then, selection takes place, and the 
corresponding candidate solutions from both populations compete to comprise the 
next generation. The operators are now explained in detail. 

For each target candidate solution, according to the mutation operator, a mutant 
vector is built:   

,1( 1) [ ( 1), ,iiV t v t+ = +  , ( 1)]i dv t +  (2.2) 


