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Summary. This paper has two main parts. In the first part, we discuss the ex
istence and uniqueness of the W^'^-solution u^,u of a second order differential 
equation with two boundary points conditions in a finite dimensional space, 
governed by controls //, v which are measures on a compact metric space. We 
also discuss the dependence on the controls and the variational properties of 
the value function Vh(t,/x) := sup^g7^/i(u^,,/(t)), associated with a bounded 
lower semicontinuous function h. In the second main part, we discuss the lim
iting behaviour of a sequence of dynamics governed by second order evolution 
inclusions with two boundary points conditions. We prove that (up to ex-
tra<:ted sequences) the solutions stably converge to a Young measure u and we 
show that the limit measure u satisfies a Fatou-type lemma in Mathematical 
Economics with variational-type inclusion property. 

Key words: Fatou lemma, value function, second order differential equation, 
second order differential inclusion. Young measure, fiber product. 
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1. Introduction 

The study of the value function and of Fatou-type lemmas occurs in 
Mathematical Economics. In the present paper, we discuss in a first part 
(Section 3) the existence and uniqueness of the Wß -solution u^^j^ of 
the second order differential equation (ODE) with two boundary points 
conditions of the form 

Ht) = 9{t,u^,j,,ßu ^t), t e [0,1]; u^^^{0) = u^^^,{l) = 0 

in a finite dimentional space E, where p is a Caratheodory mapping 
defined on [0,1] x £; x MX{S) X M\{Z) with values in E, S and Z 
are two compact metrizable spaces, M\{S) (resp. M\{Z)) is the com
pact metrizable (for the vague topology) space of all probability Radon 
measures on S (resp. Z), and the controls t \-^ ßt (resp. t \-^ Vt) are 
Lebesgue-measurable mappings from [0,1] to M\{S) and M\{Z) re
spectively. We study the dependence of the solution Uy,^i^ with respect 
to the controls /x, u where /x belongs to a compact subset H for the con
vergence in probability of Lebesgue-measurable mappings from [0,1] to 
M\{S) and v belongs to a compact subset 1^ for the stable topology 
[4, 18] of Lebesgue-measurable control mappings from [0,1] to M\{Z), 
and we discuss the variational properties of the value function 

Vhit^fi) := sup/i(tfc^,^(t)), 
veil 

associated with a bounded lower semicontinuous real valued function h 
defined on E. In the second part (Section 4), we discuss the limiting 
behaviour of a sequence of dynamics governed by second order evolution 
inclusions (EI) with two boundary points conditions of the form 

-Ün{t) e dfn{t, Unit)) + H{t, Un{t), Ün{t)), Un{0) = Un{l). 

Here {dfn) is a sequence of subdifferential operators associated with 
a sequence of nonnegative normal convex integrands (fn) defined on 
[0,1] x E,Un is a W^'^-solution of the preceding second order evo
lution inclusion, if is a Caratheodory mapping defined on [0,1] x 
E X E with values in E. Provided that (i) H satisfies some growth 
condition, (ii) (ün) is bounded in L£;([0,1]), (iii) there exists v E 
^^^([0,1]) such that sup^^/^ fn{t,v{t))dt < +oo, and (iv) (fn) is in-
tegrably dominated by a nonnegative normal convex integrand /oo, that 
is, limsup^ f^ fn{t^v{t)) dt < Jj^foo{t^v(t))dt for every Lebesgue-mea
surable set A C [0,1] and for every v e L^{[0,1]), and (fn) lower epicon-
verges to /oo, we prove (Proposition 4.8) that (up to extracted sequences) 
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(un) converges uniformly to a W^ -function u, (iin) converges point-
wisely to Ü, (un) stably converges to a Young measure u with barycenter 
t i-> bar(i/t) € I'£;([0,1]), and the following variational-type inclusion 
holds: 
(a) 

- bar(i/t) e dfoo{t, u{t)) -f- H{t, u{t),ü{t)) a.e. on [0,1]. 

(b) Further the following Fatou-type lemma holds: 

liminf / {-ün{t) - H{t,Un{t),ün{t)),v{t) - Un{t)) dt 

> / {-b8iT{ut)-H{t,u{t),ü{t)),v{t)-u{t))dt, 
Jo 

provided that (/n(-5^n(-))) is uniformly integrable, and for each t' G 
Lg^([0,1]) for which (/n(-)^(-))) is uniformly integrable. So (a) and (b) 
show that the Umit measure u satisfies a Fatou-type lemma in Mathe
matical Economics with variational-type inclusion property. For more on 
Fatou type-lemma in Mathematical Economics, see [3, 5, 7, 11, 13, 19] 
and the references therein. The present work is essentially a continua
tion of [17, 15, 16] dealing with control problems where the dynamics are 
given by ordinary differential equations [17] and evolution inclusions gov
erned by nonconvex sweeping process and m-accretive operators [15, 16] 
via the fiber product of Young measures [17]. Here we derive from [2, 17] 
new results of variational convergence for both ODE of second order 
and EI of second order governed by the subdifFerential of convex lower 
semicontinuous functions. Our results shed a new light on the use of 
the fiber product of Young measures developed in [17] in the study of 
the variational limits in the problems under consideration. In Section 
3 we present, for simplicity a Bolza-type problem associated with the 
second order ordinary differential equation with two points-boundary 
conditions where the controls are two Young measures and in particular 
we give some variational properties of the value function associated with 
a bounded real valued upper semicontinuous function. We refer to [25] for 
the pioneering work on the problem of two points-boundary conditions 
for ODE, and to [2] for a recent study of the problem of three points-
boundary conditions for second order differential inclusions in Banach 
spaces. 

In Section 4 we present some variational limits for a class of sec
ond order evolution inclusions governed by a family of subdifferentials 
of convex lower semicontinuous functions via the lower epiconvergence 
of normal integrands and the fiber product of Young measures. In par
ticular, we discuss a Fatou-type property which occurs therein. We refer 
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to [1, 9, 8, 30] for other related results regarding second order evolu
tion problem. We refer to [6, 21, 22, 23, 29, 39, 40] for control problems 
governed by first order ODE. 

2. Notations, definitions, preliminaries 

Throughout, ( f i ,5 ,P) is a complete probability space, S and T are two 
Polish spaces, E = R^ is a. finite dimensional space (unless otherwise 
specified), £([0,1]) is the cr-algebra of Lebesgue-measurable sets of [0,1], 
and X = dt is the Lebesgue measure on [0,1]. By L^([0, i\,dt) we de
note the space of all Lebesgue-Bochner integrable £'-valued functions 
defined on [0,1]. Let C£;([0,1]) be the Banach space of all continuous 
functions u : [0,1] -^ E equipped with the sup-norm. By W^'^([0,1]) 
we denote the space of all continuous functions u G CE{[0, 1]) such that 
their first derivatives are absolutely continuous. For the sake of com
pleteness, we summarize some useful facts concerning Young measures. 
Let X be a Polish space and let C^{X) be the space of all bounded 
continuous functions defined on X. Let M\{X) be the set of all Borel 
probability measures on X equipped with the narrow topology. A Young 
measure X : ft —^ M\{X) is, by definition, a scalarly measurable map
ping from n into M\{X), that is, for every / G C^(X), the mapping 
a; i~> (/, Atj) := f^ f{x)dXcj{x) is «S-measurable. A sequence (A^) in 
the space of Young measures y{Q>, 5 , P ; X) stably converges to a Young 
measure A G J^(f2,5, P ; X) if the following holds: 

lim / [ / f{x) dXZix)] dP{u) = / [ / f{x) dX^{x)] dP{u) 
^ JA JX JA JX 

for every A e S and for every / G C^{X). If X and Y are Polish spaces 
and if A G ^(17,5, P; X) and /i G y{n, 5 , P ; F ) , the fiber product of A 
and fjL is the Young measure A0/x G 3^(f2,5, P; X x Y) defined by 

(A0//)u; = Ao; 0 /iu; 

for all (jj £ ft. We recall the following result concerning the fiber product 
lemma of Young measures, see [17, Theorem 2.3.1] (or [18, Theorem 
3.3.1]). For more on Young measures, see [4, 37, 38,18] and the references 
therein. 

Proposition 2.1. Assume that S and T are Polish spaces. Let (/x^) be 
a sequence in y{Q,S,P;S) and let (i/^) be a sequence in y{ft,S,P;T). 
Assume that 
(i) {/ji^) converges in probability to ji^ G 3^(0, <S, P ; S), 
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(ii) (i/^) stably converges to v"^ e y{n,S,P;T). 
Then (/x'^^i/^) stably converges to / / ^0z / ^ . 

For the sake of completeness, let us also mention a general result of 
convergence for Young measures in [17], which we need in the statement 
of next results. 

Proposition 2.2. Assume that S and T are Polish spaces. Let {vP') 
be sequence of S-measurable mappings from Q. into S such that {u^) 
converges in probability to a S-measurable mapping u^ from Q into S 
and {v"^) be a sequence of S-measurable mappings from Q into T such 
that {v'') stably converges to z/^ e y{Q, S,P;T). Let h : Qx S xT -^ R 
be a Caratheodory integrand such that the sequence (/i(.,i/n(-)?^n(-)) ^̂  
uniformly integrable. Then the following holds: 

lim f h{üJ,vJ'{ijü),v''{oj))dP{uj)= [ [ [ h{u;,u'^{uj),t)du^{t)]dP{uj), 

3. Control problem governed by a second order ODE 
with measures 

In the remainder S and Z are two compact metric spaces. Let W be a 
subset in 3^([0,1],5) equipped with the convergence in probability. By 
W^'^([0,1]) we denote the set of all continuous functions in C£7([0,1]) such 
that their first derivatives are continuous and their second derivatives 
belong to L^; ([0,1]). Let us consider a mapping / : [0, l ] x E ' x £ ' x 5 x Z - ^ 
E satisfying: 
(i) For every t G [0,1], / ( t , . , . , . , . ) is continuous on ExExSxZ, 
(ii) For every {x,y,s,z) G E x E x S x Z,f{.,x,y,s,z) is Lebesgue-
measurable on [0,1]. 
(iii) There is a constant c > 0 such that f{t,x,y,s,z) G c ( H - ||x|| + 
||2/||)5£;(0,1) for all {t,x,y,s,z) G[0,1] x E x E x S x Z. 
(iv) There exist Lipschitz constants Ai, A2 satisfying Ai + A2 < 1/2 such 
that 

\\f{t,xi,yi,s,z) - f{t,X2,y2,s,z)\\ < Ai||a:i - a:2|| + A2||t/i -y2\\ 

for all (t, xi.yi, 8, z), {t, X2,y2, s, z) e[0,l] x E x E x S x Z. 
We are given a measurable multifunction Fdefined on[0,1] with nonempty 
compact values in Z. We consider the W^£;'̂ ([0, l])-solutions set of the two 
following second order differential equations: 

(T> \ / ^^'C,W = /5/(^'^A^,C,W.^/x,c,W,5,C(t))/xt(d5) a.e. t G [0,1], 
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where // € W and C belongs to the set 5r of all original controls, which 
means that C is a Lebesgue-measurable mapping from [0,1] into Z with 
C(t) G r ( t ) for a.e. i e [0,1], and 

{ ^i^A^) = 

UfiA^) = u^A^) = 0, 

where i/ belongs to the set IZ of all relaxed controls, which means that 
1/ is a Lebesgue-measurable selection of the multifunction E defined by 

E{t) :={aeMX{Z): aim) = 1} 

for all t e [0,1], and fi e H. Note that the existence of ^^'^([0,1])-
solutions for the preceding equations follows from [2, Theorem 1.4] deal
ing with the problem of three points boundary conditions for the same 
dynamic / which can be applied in the particular case of two points-
boundary conditions that we present below. For the sake of complete
ness, we recall some results developed in [25, 2] and summarize some 
facts. 

Proposition 3.1. ([2^ Lemma 1.1 and Proposition I.4]) Let G : [0,1] x 

[0,1] -^ [—1, -hi] be the function defined by 

G{t,s) = s(t'-1) i f O < 5 < t < 1, 

and 
G{t, s) = {s-l)ti{0<t<s<l. 

1) Ifue Wl'\[0,1]) with u(0) = u{l) = 0, then 

u{t) = I G{t,s)ü{s)ds, yt e [0,1]. 

In fact, u is given explicitely by 

u{t) = {t-l) sü{s) ds-[-t {s- l)ü{s) ds. 

2) Let f € i^£;([0,1]), then the function Uf defined by 

Uf{t)= [ G{t,s)f{s)ds, VtG[0,l] 
Jo 

is the unique W^'^{[0^1])-solution of the second order ODE 
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ü{t) = f{t), t e [0,1], u{0) = u(i) = 0 

and satisfies 

Mt) = J -g^{t,s)f{s)ds, \/te[OA]. 

where ^ ( . , . ) is Borel with \^{t,s)\<l for all t, s, G [0,1]. 
3) For each (/x, u) e H x 11^ the second order ODE 

^W = / [ / /(^» ^W^ ̂ W» 5. ^) ßt{ds)] ut{dz) 
Jr(t) Js 

with u{0) = u{l) = 0, has a unique solution u G W^ ([0,1]). Further, for 
some constant m> 0 which depends only on c, Ai, A2, one has \\ü{t)\\ < 
m for almost all t € [0,1]. 

Now comes a Bolza-type optimal control problem associated with the 
preceding second order ODE where the controls are Young measures. 

Theorem 3.2. Assume that E is a finite dimensional space and H is 
compact for the convergence in probability. Let I : [0,1] x E x E x S x 
Z -^ R be an L^'bounded Caratheodory integrand, (that is, / ( t , . , . , . , . ) 
is continuous onExExSxZ for every t e [0,1] and / ( . , x, y, 5, z) is 
Lebesgue-measurable on [0,1], for every {x,y,s,z) G ExExSxZ) which 
satisfies the condition: there is a positive Lebesgue- integrable function h 
such that \I{t, X, y, s,z)\ < h{t) for all {t,x,y,s,z) G [0,\]xExExSxZ. 
Let us consider the control problems 

(Pn^o): ^ inf ^ / [ / / ( t , t z^ , cW,VcW,5 ,CW)MtW]d t 

and 

{Pn,n)' , inf / [ [ I{t,Uf,^^{t),ü^^^{t),s,z)fjit{ds)]iyt{dz)]dt 
(ß,j^)enxnjQ Jz Js 

where u^,^ (resp. u^^j^) is the unique W^'^([0, l])-solution associated with 
(/x, Q {resp. (/x, u)) to the second order differential equation {T>n,o) {resp. 
(^H,7^))• Then one has m{{Pn,o) = mi{P'H,n)' 

Proof. Claim 1: The graph of the mapping (/x, v) i-> Uy^^y defined on the 
compact space H x TZ with value in the Banach space C£;([0,1]) of all 
continuous mappings from [0,1] into E endowed with the sup norm is 
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compact. 
Let {fi^) be a sequence in H which converges in probabihty to fi^ e H. 
Let (i/^) be a sequence in TZ := 5 E which stably converges to v^ G 7^, 
and, for each n G NU{oo}, let u^nyn be the unique 1^^'^([0, l])-solution 
of 

' i i /xn ,^n( t ) = / [ / f{t,U^r.^^n{t),Ü^n^^n{t)^S,z)ß'l{ds)]u'^{dz), 

Jr(t) Js 

for t G [0,1] and w^nĵ n(O) = U/x«,i/n(l) = 0. Then we claim that 
{u^nj^n(.)) converges uniformly to n^oo,iyoo(.). Fix ß G]0, 1[ such that 
Al + A2 < (1 — ß)/2. Using the estimation in [2, Theorem 1.4 and 
Lemma 1.1] involving the use of Hartmann function G given in Propo
sition 3.1, we may suppose, by extracting subsequences, that {u^n^jyn{,)) 
converges uniformly to a W^ ([0, l])-function u^{.) and {üf^n^^j^n (.)) con
verges pointwisely to ü^{.) and there exists a positive constant m such 
that 11% ,̂!/"(OH ^ ^ 3,nd ||^/x"„i/"(.)ll ^ ^ for all n G N. By Proposi
tion 3.1 (or [2, Lemma 1.1]), for each t G [0,1] and for each n G N, we 
have 

Jo Jz Js 

- / Git,T)[ [ f{T, 
Jo Jz Js 

-h / G{t,T)[ [ /(T,n^cx>,^oo(r),u^cx,,^oo(r),5,z)/i;?(ds)]z/;?(dz)]dr 
Jo Jz Js 

- / G{t,T)[ [ f{T,u^n^^n{r),ü^n^^n{T),s,z)ß:;:{ds)]u:^{dz)]dT, 
Jo Jz Js 

where G is a continuous mapping from [0,1] into [—1,1]. By hypothesis, 
we have 

||/(r,%oc^^oo(r),u^oo^j^oo(r),5,z) - f{r,u^r^^^n(r),ii^n^j^n(5), s,z)\\ 

< A l | | w ^ o o ^ ^ o o ( r ) -U^n^i,n{T)\\ + A2 | |w^cx> ̂ ^oo ( T ) " W^n ^ .̂n ( T ) | | 

< ( A l + A2)( | | iX;x«>,i .oc(r) - U^n^j,n{T)\\ - f | |u^oo ^^00 ( T ) - Ü ̂ xn ^^n (T) \\) 

< — y - ( | | ^ A ^ ~ , l / ~ ( ' 7 " ) - % - , l / - ( r ) | | + | | % o o , ^ c x > ( r ) - Ü^n^j,n{T)\\) 

for all T G [0,1] and for all 5, z G 5 x Z. For simplicity, for each t G [0,1] 
and for each n G N, let us set 
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= [ / [ / C?(t,T)/(r,u^oc,^oo(T),ü^=o,^=o(r),s,2;)^;?(ds)]i/;'(dz)]dT, 
Jo Jz Js 

and 

= I {f [f G{t,r)f{T,U^oo^,oo{T),ü^oo^,oo{T),S,z)fl^{ds)]u^{dz)]dT, 

Jo Jz Js 

Note that the Caratheodory integrand defined on [0,1] x 5 x Z by 

ipt : (r, 5, z) 1-̂  G{t, T)f{T, Ufj,oo^j,oo(r), ii^oo^^oo(r), 5, z) 

is L^-bounded because |G(^,r)| < 1 for all t^r e [0,1] and by our 
assumption, there is a positive constant M = c(2m + 1) such that 
| | / ( r ,a: ,y,5,z) | | < M for all (r, x, y, s, z) G [0, l]xß£;(0,m)]xB£;(0,m)x 
S X Z, Since (z/^) stably converges to i/°° and /i^ narrowly converges in 
probability to /i°°, /x"^0i/'̂  stably converges to / i°°0i/^. Using Proposi
tions 2.1-2.2, we get 

lim v^'it) = lim / {<pu Mr ^ ^?> dr = / (^t, M?° ̂  O ^̂ r = v'^it) 

for every t € [0,1]. Therefore, for each t G [0,1], we have the estimate 

with t;°* (̂t) — v'^{t) tending to 0 when n goes to -|-oo. Since, for all t G 
[0,1], 

= / [ / [ / -^it,T)f{T,U^oo^^oo{T),Ü^oo^^oo{T),S,z)lJi^{ds)]u^{dz)]dT 

and 


