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Preface

The overarching goal of the EVOLVE international conference series is to build
a bridge between probability, statistics, set oriented numerics and evolutionary
computing, as to identify new common and challenging research aspects and
solve questions at the cross-sections of these fields. There is a growing interest
for large-scale computational methods with robustness and efficiency guarantees.
This includes the challenge to develop sound and reliable methods, a unified
terminology, as well as theoretical foundations.

In this year’s edition of EVOLVE held at LIACS, Leiden University, The
Netherlands (evolve2013.liacs.nl) major themes are machine learning, proba-
bilistic systems, complex networks, genetic programming, robust and diversity-
oriented and multiobjective optimization using evolutionary methods as well
as set-oriented numerics and cell-mapping. The range of topics is also well re-
flected in the spectrum of special sessions, organized by internationally renowned
experts: Set Oriented Numerics (Michael Dellnitz and Kathrin Padberg), Evo-
lutionary Multiobjective Optimization (Oliver Schütze), Genetic Programming
(Pierrick Legrand, Leonardo Trujillo and Edgar Galvan), Probabilistic Models
and Algorithms: Theory and Applications (Arturo Hernández-Aguirre),
Diversity-oriented Optimization (Vitor Basto Fernandes, Ofer Shir,
Iryna Yevseyeva, Michael Emmerich, and André Deutz), Complex Networks
and Evolutionary Computation (Jing Liu), Robust Optimization (Massimiliano
Vasile), and Computational Game Theory (Rodica I. Lung and D. Dumitrescu).

The twenty peer reviewed contributions discuss overarching themes and pre-
sent answers to questions, such as: How to assess performance? How to design re-
liable and efficient computational algorithms for learning, genetic programming,
and multiobjective/multimodal/robust optimization? What are the sources of
complexity and problem difficulty? How to build a frameworks for set-oriented
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search? Therefore these proceedings present cutting edge research in these re-
lated fields and will serve as a stepping stone towards a more integrated view of
advanced computational models and methods.

Leiden, Mexico City, Luxembourg, and Bordeaux Michael Emmerich
April 2013 André Deutz

Oliver Schütze
Thomas Bäck
Emilia Tantar

Alexandru-Adrian Tantar
Pierre del Moral
Pierrick Legrand
Pascal Bouvry

Carlos Coello Coello
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Constructing a Solution Attractor for the

Probabilistic Traveling Salesman Problem
through Simulation

Weiqi Li

University of Michigan – Flint 303 E. Kearsley Street,
Flint, MI Postal Code 48502, U.S.A.

weli@umflint.edu

Abstract. The probabilistic traveling salesman problem (PTSP) is a
variation of the classic traveling salesman problem and one of the most
significant stochastic network and routing problems. This paper proposes
a simulation-based multi-start search algorithm to construct the solution
attractor for the PTSP and find the best a priori tour through the so-
lution attractor. A solution attractor drives the local search trajectories
to converge into a small region in the solution space, which contains the
most promising solutions to the problem. Our algorithm uses a simple
multi-start local search process to find a set of locally optimal a priori
tours, stores these tours in a so-called hit-frequency matrix E, and then
finds a globally optimal a priori tour in the matrix E. In this paper, the
search algorithm is implemented in a master-worker parallel architecture.

Keywords: Stochastic optimization, global optimization, simulation,
probabilistic traveling salesman problem, local search, parallel algorithm.

1 Introduction

The classic traveling salesman problem (TSP) is defined as: Given a set of n
cities and an n × n cost matrix C in which c(i, j ) denotes the traveling cost
between cities i and j (i, j = 1,2,. . . , n; i �= j ). A tour π is a closed route that
visits every city exactly once and returns at the end to the starting city. The
goal is to find a tour π∗ with minimal traveling cost.

In the real world, many optimization problems are inherently dynamic and
stochastic. Such problems exist in many areas such as optimal control, logis-
tic management, scheduling, dynamic simulation, telecommunications networks,
genetics research, neuroscience, and ubiquitous computing. As real-time data in
information systems become increasingly available with affordable cost, people
have to deal with more and more such complex application problems. For the
TSP under dynamic and stochastic environment, the number of cities n can in-
crease or decrease and the cost c(i, j ) between two cities i and j can change
with time. In this paper we consider only the case in which the number of cities
n changes with time t. Therefore, the TSP can be defined as:

M. Emmerich et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics, 1

and Evolutionary Computation IV, Advances in Intelligent Systems and Computing 227,
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2 W. Li

min f(π) =

nt−1∑
i=1

c(i, i+ 1) + c(nt, 1) (1)

subject to nt ∈ N

where nt is the number of cities at time t and N is the set of all potential cities
existing in the problem. If we want to design an algorithm and its purpose is
to continuously track and adapt the changing n through time and to find the
currently best solution quickly, that is, to re-optimize solution for every change
of n, the TSP is defined as a dynamic TSP. If we treat the number of cities n as
a random variable and wish to find an a priori tour through all N cities, which
is of minimum cost in the expected value sense, the TSP becomes a probabilistic
TSP (PTSP). In a PTSP, on any given realization of the problem, the n cities
present will be visited in the same order as they appear in the a priori tour, i.e.,
we simply skip those cities not requiring a visit. The goal of an algorithm for
PTSP is to find a feasible a priori tour with minimal expected cost [1, 2].

The PTSP was introduced by Jaillet [2, 3], who examined some of its combina-
torial properties and derived a number of asymptotic results. Further theoretical
properties, asymptotic analysis and heuristic schemes have been investigated by
[4-7]. Surveys of approximation schemes, asymptotic analysis, and complexity
theorems for a class of a priori combinatorial optimization problems can be
found in [1, 8].

Formally, a PTSP is defined on a complete graph G = (V, A, C, P), where
V = {vi: i = 1, 2, . . . , N } is a set of nodes; A = {a(i, j ): i, j ∈ V, i �= j} is the
set of edges that completely connects the nodes; C = {c(i, j ): i, j ∈ A} is a set
of costs associated with the edges; P = {pi: i ∈ V } is a set of probabilities that
for each node vi specifies its probability pi of requiring a visit. In this paper, we
assume that the costs are symmetric, that is, traveling from a node vi to vj has
the same cost as traveling from node vj to vi. We also assign v1 as the depot
node with the presence probability of 1.0. Each non-depot node vi is associated
with a presence probability pi that represents the possibility that node vi will
be present in a given realization. Based on the values of presence probability
(pi) of non-depot nodes, two types of PTSP can be classified: the homogeneous
and heterogeneous PTSP. In the homogeneous PTSP, the presence probabilities
of non-depot nodes are all equal (pi = p for every non-depot node vi); in the
heterogeneous PTSP, these probabilities are not necessarily the same.

Designing effective and efficient algorithms for solving PTSP is a really chal-
lenging task, since in PTSP, the computational complexity associated with the
combinatorial explosion of potential solutions is exacerbated by the stochastic
element in the data. The predominant approach to finding good solutions for
PTSP instances has been the adaptation of TSP heuristics [5-8]. In general, re-
searchers use two techniques in their search algorithms: analytical computation
and empirical estimation [9]. The analytical computation approach computes the
cost f (π) of an a priori tour π, using a closed-form expression. Empirical estima-
tion simply estimates the cost through placeMonte Carlo simulation. Birattari
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et al. [9] discussed some limitations on analytical computation technique and
suggested that the empirical estimation approach can overcome the difficulties
posed by analytical computation.

In recent years, many local search and metaheuristic algorithms such as ant
colony optimization, evolutionary computation, simulated annealing and scat-
ter search, using analytical computation or empirical estimation approach, have
been proposed to solve the PTSP [4, 7, 10-21]. Bianchi et al. [22] provided a
comprehensive overview about recent developments in the metaheuristic algo-
rithms field. In this paper, we propose a new simulation-based algorithm to solve
PTSP. This paper is organized as follows. In section 2 we discuss the placeMonte
Carlo sampling approximation. In section 3, we briefly describe the construction
of solution attractor for TSP. In section 4, we describe the proposed simulation-
based algorithm and discuss some experimental results. Section 5 concludes this
paper.

2 Monte Carlo Sampling Approximation

The sampling approximation method is an approach for solving stochastic opti-
mization problem by using simulation. The given stochastic optimization prob-
lem is transformed into a so-called sample average optimization problem, which
is obtained by considering several realizations of the random variable and by
approximating the cost of a solution with a sample average function [23]. In the
context of the PTSP, this method has been shown to be very effective [9, 24].

In sampling approximation search, a stochastic optimization problem is rep-
resented by a computer simulation model. Simulation models are models of real
or hypothetical systems, reflecting all important characteristics of the system
under studied. Perhaps one of the best known methods for sampling a proba-
bility distribution is the placeMonte Carlo sampling technique, which is based
on the use of a pseudo random number generator to approximate a uniform
distribution. Currently, the placeMonte Carlo sampling approximation method
is the most popular approach for solving stochastic optimization problems. In
this technique the expected objective function of the stochastic problem is ap-
proximated by a sample average estimate derived from a random sample. We
assume that the sample used at any given iteration is independent and identi-
cally distributed, and that this sample is independent of previous samples. The
resulting sample average approximating problem is then solved by determinis-
tic optimization techniques. The process can be repeated with different samples
to obtain candidate solutions along with statistical estimates of their optimality
gaps [18]. Sampling approximation via simulation is statistically valid in the con-
text of simulation as the underlying assumptions of normality and independence
of observations can be easily achieved through appropriate sample averages of in-
dependent realizations, and through adequate assignment of the pseudo-random
number generator seeds, respectively.
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In the case of PTSP, the elements of the general definition of the stochastic
problem take the following format: a feasible tour π is an a priori tour visiting
once and only once all N cities, and the random variable n is extracted from an
N -variate Bernoulli distribution and prescribes which cities need being visited.
This leads in total of 2N possible scenarios for N cities. A nave way to calculate
the expected cost of a solution would be to sum over all possible scenarios the cost
of the a posteriori solution in this scenario multiplied with the probability for this
scenario. Obviously the summation over 2N terms is computationally intractable
for reasonable values of N. Another more efficient way is using placeMonte Carlo
sampling: instead of summing over all possible scenarios, we could sample M (M
< 2N ) scenarios of using the known probabilities and take the average over the
costs of the a posteriori tours for the sampled scenarios. Therefore, the cost
f (π) of a PTSP tour π can be empirically estimated on the basis of a sample
f (π, n1), f (π, n2), . . . , f (π, nM ) of costs of a posteriori tours obtained from M
independent realizations n1, n2, . . . , nM of the random variable n:

f̂M (π) = 1
M

M∑
i=1

f(π, ni) (2)

f̂M (π) denotes the average of the objective values of the M realizations on the a
priori tour π, which gives us an approximation for the estimated cost for tour π.
Clearly, f̂M (π) is an unbiased estimator of f (π). A search algorithm for PTSP
is looking for the optimal tour π∗ which has the smallest estimated objective
valuef̂M (π∗), that is,

π∗ ∈ arg min{f̂M (π1), f̂M (π2), . . .} (3)

The optimal value f̂M (π∗) and the optimal tour π* to the PTSP provide esti-
mates of their true counterparts.

Because we obtain only estimates using this way, it may not be possible to
decide with certainty whether tour πi is better than tour πj , which may frustrates
the search algorithm that tries to move in an improving direction. In principle, we
can eliminate this complication by making so many replications at each iterative
point that the performance estimate has essentially no variance. In practice, this
could mean that we will explore very few iteration due to the time required to
simulate each one. Therefore, in a practical sampling approximation algorithm,
the test if a solution is better than another one can only be done by statistical
sampling, that is, obtaining a correct comparison result only with a certain
probability. The goal now is to get a good average case solution and the expected
value of the objective is to be optimized. The way simulation approximation is
used in an optimization algorithm largely depends on the way solutions are
compared and the best solutions among a set of other solutions is selected.

The number of realizations M should be large enough for providing a reliable
estimate of the cost of solutions but at the same time it should not be too large
otherwise too much time is wasted. The appropriate number of realizations M
depends on the stochastic character of the problem at hand. The larger the
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probability that a city is to be visited, the less stochastic an instance is. In
this case, the algorithms that obtain the best results are those that consider a
reduced number of realizations and therefore explore more solutions in the unit
of time. On the other hand, when the probability that a city is to be visited
is small, the instance at hand is highly stochastic. In this case, it pays off to
reduce the total number of solutions explored and to consider a larger number
of realizations for obtaining more accurate estimates [23, 25, 26].

There are many sampling strategies available. For the PTSP, common sam-
pling strategies include (1) the same set of M realizations is used for all steps
of the iteration in the algorithm; (2) a set of M realizations is sampled anew
each time an improved solution is found; and (3) a set of M realizations is sam-
pled anew for each comparison of solutions. The first strategy is a well-known
variance-reduction technique called the method of common random numbers
(CRN). CRN takes advantage of the same set of random numbers across all
alternatives for a given replication. CRN is typically designed to induce pos-
itive correlation among the outputs of each respective alternative for a given
replication, thereby reducing the variance of the difference between the mean al-
ternative point estimators. One of the practical motivations for using CRN in a
search algorithm is to speed up the sample average computations. However, one
major problem with CRN is that the iterates of the algorithm may be “trapped”
in a single “bad” sample path. Second and third strategies are called variable-
sample method. Resampling allow the iterates of the algorithm to get away from
those “bad” sample paths. Another advantage of a variable-sample scheme is
that the sample sizes can increase along the algorithm, so that sampling effort
is not wasted at the initial iteration of the algorithm [27].

Several researchers have been proposed estimation-based algorithms to deal
with the PTSP, using local search or metaheuristics [21, 24-28]. This paper in-
troduces a new optimization approach by using solution-attractor construction
in the context of placeMonte Carlo simulation. Our algorithm includes optimiza-
tion and simulation in a parallel iterative process in order to gain the advantages
of optimization (exact solution), simulation (stochasticity) and speed (parallel
processing).

3 Solution Attractor Construction

Our approach uses a parallel multi-start search procedure to construct the solu-
tion attractor for the PTSP. Due to the NP-hardness and intractability of the
combinatorial optimization problems, heuristic search techniques have become a
popular means to find reasonable good solutions to these problems. Many search
heuristics have been based on or derived from a general technique known as local
search [29]. A search trajectory is the path followed by the search process in the
solution space as it evolves with time. Local search techniques are locally con-
vergent. The final solution usually is a locally optimal solution. Local optimality
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depends on the initial solution and the neighborhood function that is used in
the search process. In order to overcome local optimality, heuristic search usually
require some type of diversification to avoid a large region of the solution space
remaining completely unexplored. One simple way to achieve this diversification
is to start the search process from several different initial points. Multi-start
heuristics produce several local optima, and the best overall is the algorithm’s
output. Multi-start search helps to explore different areas in the solution space
and therefore it generates a wide sample of the local optima.

For some optimization problem such as TSP, these multi-start search tra-
jectories will converge to a small region in the solution space. From dynamic
system perspective, this small region is called a solution attractor [30]. The so-
lution attractor of a heuristic search algorithm on an optimization problem is
defined as a subset of the solution space that contains the whole solution space
of the end points (local optima) of all local search trajectories. Fig. 1 illustrates
the concepts of local search trajectories and solution attractor. Since the glob-
ally optimal point is a special case of locally optimal points, it is expected to
be embodied in the solution attractor. Li [30-32] developed a multi-start search
approach to construct the solution attractor for a TSP and applied this ap-
proach to tackle multi-objective TSP and dynamic TSP. This paper applies this
attractor-construction technique to solve PTSP.

Fig. 1. The concepts of local search trajectories and solution attractor

For a TSP instance, the solution space contains all tours that a salesman
may traverse. If we start several distinct search trajectories from different initial
points, after letting the search process run for a long time, these trajectories
would settle into the same attractive region (the solution attractor) if the prob-
lem has only one optimal solution. Fig. 2(a) presents a sequential procedure
for constructing the solution attractor of local search in a TSP instance and
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Fig. 2(b) shows a parallel procedure implemented in a master-worker architec-
ture. The construction procedure is very straightforward: generating K locally
optimal tours, storing them into a matrix (called hit-frequency matrix E ), re-
moving some unfavorable edges in E if necessary, and then finding all tours
contained in E.

The hit-frequency matrix E plays a critical role in the construction of solution
attractor. When each search trajectory reaches its locally optimal point, it leaves
its “final footprint” in E. That is, E is used to record the number of hits on the
edge a(i, j ) of the graph by the set of K locally optimal tours. Therefore, E
can provide the architecture that allows individual tours to be linked together
along a common structure and generate the structure for the global solution.
This structure can help us to find the globally optimal tour.

Fig. 2. The procedure for constructing solution attractor of local search in TSP

Fig. 3. Schematic structure of the search system for the PTSP
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4 The Proposed Simulation-Based Search System

4.1 The Parallel Search System

We implemented our multi-start search system into a parallel search system.
Parallel processing can be useful to efficiently solve difficult optimization prob-
lems, not only by seeding up the execution times, but also improving the quality
of the final solutions. Fig. 3 sketches the basic idea of our parallel search system
for the PTSP. This search system contains K processors and bears intrinsic par-
allelism in its features. Based on a common cost matrix C and probability array
P, this system starts K separate search trajectories in parallel. When a search
trajectory reaches its locally optimal solution, the processor stores the solution
in the common hit-frequency matrix E. The processor starts a new search if
more computing time is available. Finally, at the end of the search, the matrix E
is searched by an exhausted search process and the best solution in the attractor
is outputted as the optimal solution.

Fig. 4. The search system implemented in a master-worker architecture

Fig. 4 shows the implementation of our search system using a master-worker
architecture. In our master-worker architecture, one computer serves as a mas-
ter and other computers as workers. The master computer generates a TSP
instance with N nodes and a probability array P, initializes the hit-frequency
matrix E, and sends a copy of the cost matrix C to each of the worker computers.
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The multi-search task is distributed to K worker computers. Then based on
the probability values in the array P, the master computer generate a set of
M realizations (m1, m2, . . . , mM ). Each of the M realizations is an array that
contains binary values, where a value “1” at position i in the array indicates
that node vi requires being visited whereas a value “0” means that it does not
require being visited. The master computer sends the set of M realizations to
the worker computers. Depending on the setting, the master computer can send
the same set of M realizations to all worker processors or a different set of
M realizations to each of the worker computers. When receiving the set of M
realizations, each worker computer independently performs its local search: it
randomly generates an initial a priori tour, calculates the sample-averaged cost
by using the M realizations, and then generates a new a priori tour, calculates
its sample-averaged cost by using the same M realizations; if this new a priori
tour has lower average cost, the current a priori tour is replaced by this better a
priori tour; otherwise another new a priori tour is generated and compared with
the current a priori tour. When a worker computer reaches a locally optimal a
priori tour, it sends the tour to the master processor and requests a new set of
M realizations from the master processor. When the master processor receives
a locally optimal a priori tour from a worker processor, it stores the tour into
the matrix E. It then generates a new set of M realizations and sends it to the
requesting worker computer. In such was, the multi-start search is performed by
the K worker computers in parallel. When the worker computer receives the new
set of M realizations, it lunches new local search. When a predefined number
of locally optimal a priori tours are collected from the worker computers and
stored in the matrix E, these locally optimal tours form a solution attractor for
the problem. The master computer sends a signal to worker computers to stop
their searching. It then launches an exhausted search process in the matrix E.
After finding all tours in E, the master computer sends these tours to the worker
computers with a common set of M realizations; each worker computer receives
different tours. The worker computers use the set of M realizations to calculate
the sampling average and standard deviation for each of the tours, and send
these values back to the master computer. The master computer compares these
tours in terms of sampling average and finally outputs the best a priori tour.

4.2 The Experimental Problem

Due to the novelty of the field of PTSP there is no test problem instance available
to be used for implementing a new search algorithm and assessing its suitability,
effectiveness and efficiency. We design a test problem for our experiments.

The design of a test problem is always important in designing any new search
algorithm. The context of problem difficulty naturally depends on the nature
of problems that the underlying algorithm is trying to solve. In the context of
solving PTSP, our test problem was designed based on several considerations.
First, the size of problem should be large, since TSP instances as small as 200
cities are now considered to be well within the state of the global optimization
art. The instance must be considerable large than this for us to be sure that
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the heuristic approach is really called for. Second, there is no any pre-known
information related to the result of the experiment, since in a real-world problem
one does not usually have any knowledge of the solutions. Third, when dealing
with stochastic combinatorial problems, randomness in both process and data
means that the underlying model in the algorithm is suitable for the modeling
of natural problems. We should formulate a problem that goes nearer to real
world conditions. Last, the problem instance should be general, understandable
and easy to formulate so that the experiments are repeatable and verifiable.

We set up a TSP instance with N = 1000 cities. In the cost matrix C, c(i,
j ) is assigned a random integer number in the range [1, 1000], where c(i, j ) =
c(j, i). A probability array P contains a set of probability values that assigns
probability pi to city i. We specify city 1 as the depot node with p1 = 1.0. The
probability of each non-depot city is generated from a uniform random number
in a certain range. Therefore, our test problem is a heterogeneous PTSP.

4.3 The Experiments

Our experiments were conducted on a network of 6 PCs: Pentium 4 at 2.4 GHz
and 512 MB of RAM running Linux, interconnected with a Fast Ethernet com-
munication network using the LAM implementation of the MPI standard. The
search system was developed using Sun Java JDK 1.3.1. The network was not
dedicated, but was very steady. In our parallel search system, one computer
serves as a master computer and other five computers as worker processors.
Our network architecture and algorithms are asynchronous by nature, meaning
that the processors do not have a common clock by which to synchronize their
processing and calculation.

Our experiments relied heavily on randomization. All initial tours were ran-
domly constructed. We used simple 2-opt local search in our search system.
During the local search, the search process randomly selected a solution in the
neighborhood of the current solution. A move that gave the first improvement
was chosen. The local search process in each search trajectory terminated when
no improvement could be achieved after 1000 iterations.

Because our search system uses simulation, it is not possible to decide with
certainty whether a solution is better than another during the search. This can
only be tested by statistical sampling, obtaining a correct comparison result
only with a certain probability. In other words, the simulation estimates should
be accompanied with some indication of precision. The first decision we had to
make in our experiment was to choose an appropriate sample size M (number
of realizations) in our simulation. The accuracy factors we considered include
desired precision of results, confidence level and degree of variability. We used
the following equation to determine our sample size [33, 34]:

M = V (1−V )

A2

Z2 +
V (1−V )

P

(4)
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where M is the required sample size; P is the size of population; V is the
estimated variance in population, which determines the degree to which the
attributes being measured in the problem are distributed throughout the popu-
lation; A is the desired precision of results that measures the difference between
the value of the sample and the true value of the real population, called the sam-
pling error; Z is the confidence level that measures the percentage of the samples
would have the true population value within the range of chosen precision; and
P is the size of population.

In our search system, we have two phases of simulation. In the first phase,
the worker computers use simulation to calculate sample averages and compare
tours. In this phase, we choose the sampling error A = ±3% and confidence level
Z = 1.96 (95% confidence). Because our PTSP instance is heterogeneous, we use
variability V = 50%. Using Eq. (4) we calculate M = 1067. In the second phase,
the workers use simulation to calculate sample averages for the tours found in
the matrix E, and then the master computer uses these information to order the
tours. In this phase, we choose the sample error A = ±3%, confidence level Z =
2.57 (99% confidence) and V = 50%. We calculate M = 1835. Therefore, in our
experiment, we used MI= 1100 realizations in the first phase and MII = 1850
in the second phase.

We generated a TSP instance and a probability array P, in which the value of
pi was generated from a uniform random number in the range [0.1, 0.9]. When
the master computer collected 30 locally optimal tours from the worker com-
puters, the search system stopped searching. The master computer applied an
exhausted-search procedure on E, and found 36 tours in E. The master com-
puter sent these tours to the worker computers. Four worker computers got 7
tours and one worker computer got 8 tours. The worker computers calculate the
sampling averages and standard deviations for these tours. Table 1 lists the five
best tours found in E. We can see that the expected cost of the best tour is 4889
with standard deviation 201.

Table 1. The five best torus found in the matrix E

Then we ran the same TSP instance in the search system four more times.
Table 2 lists the results of these five trials. The table shows the number of tours
found in the matrix E, the sampling average of the best tour found in each of
the trials and total computing time consumed by each of the computers. We
compared these five best tours and found that they were the same tour; even
it bore a different sampling average value in each of trials. This best tour is
probably a globally optimal a prior tour for the PTSP instance.
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Table 2. Results of five trials on the same TSP instance

In another experiment, we used the same TSP instance but generated three
different probability arrays P1, P2 and P3. The values in P1, P2 and P3 were
generated from the range [0.1, 0.4], [0.3, 0.7] and [0.6, 0.9], respectively. For the
probability array P1, we ran the search system five times. The search system
outputted three different best tours in these five trials. It indicates that, when a
PTSP instance becomes more stochastic, our search system has more difficulty
to find the globally optimal a priori tour. Then we ran search system five times
for the probability array P2, the search system outputted the same best tours
with different sampling average values. Last we ran search system five times for
the probability array P3, the search system also outputted the same best tour.
Obviously, when a PTSP instance is less stochastic or its average probability is
50/50, our search system may be able to find the globally optimal a priori tour.
The results of this experiment are shown in Table 3.

Table 3. The results of experiment on different probability arrays

For the PTSP instance with the probability array P1, we were wondering if
we could improve the search quality by increasing the number of realizations in
the search process. We set MI = 1100 and MII = 1850 and ran the problem
instance 10 times. We found five different best tours in the ten trials and five
trials outputted the same tour. Then we change MI = 3000 and MII = 3000,
rand the problem instance 10 times again. We found three different best tours
in the ten trials and seven trials outputted the same tour. Then we did the same
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procedure using MI = 6000 and MII = 6000. This time we found two different
best tours and nine trials gave us the same tour. This experiment indicates that
we can improve our search by increasing the number of realizations in the search
process. Table 4 lists the experiment results.

Table 4. Search results in three different M settings

5 Conclusion

This paper describes a new search algorithm for PTSP, using Monde Carlo sim-
ulation and being implemented in a parallel-processing architecture. The search
process and simulation for realizations are performed by several parallel proces-
sors. If only one processor conducts local search and simulation in a finite time,
the search trajectories are trapped in some local valleys and the search system
is not really ergodic. Our search system takes a large ensemble of placeMonte
Carlo salesmen from different processors to construct the solution attractor; it
produces global nature of output. Our search system bears intrinsic parallelism,
flexibility and diversity.

Since the primary goal of this paper is to introduce a new search algorithm,
demonstrate the general applicability to PTSP, and analyze its search behavior,
we didn’t spend time on comparison with other algorithms. Work which follows
this paper will comprehend the performance analysis of the proposed algorithm
and comparison of the algorithm with respect to other PTSP algorithms.

References

1. Bertsimas, D.J., Jaillet, P., Odoni, A.R.: A Priori Optimization. Operations Re-
search 38, 1019–1033 (1990)

2. Jaillet, P.: Probabilistic Traveling Salesman Problems. Ph.D Thesis, Massachusetts
Institute of Technology, MA, USA (1985)

3. Jaillet, P.: A Priori Solution of a Traveling Salesman Problem in Which a Random
Subset of the Customers Are Visited. Operations Research 36, 929–936 (1988)

4. Bertsimas, D.J.: Probabilistic Combinatorial Optimization Problems. Ph.D Disser-
tation. Massachusetts Institute of Technology, MA, USA (1988)

5. Bertsimas, D.J., Howell, L.: Further Results on the Probabilistic Traveling Sales-
man Problem. Journal of Operational Research 65, 68–95 (1993)



14 W. Li
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26. Balaprakash, P., Pirattari, P., Stützle, T., Dorigo, M.: Estimation-based Meta-
heuristics of the Probabilistic Traveling Salesman Problem. Computers & Opera-
tions Research 37, 1939–1951 (2010)

27. Homen-de-Mello, T.: Variable-Sample Methods for Stochastic Optimization. ACM
Transactions on Modeling and Computer Simulation 13, 108–133 (2003)

28. Weyland, D., Bianchi, L., Gambardella, L.M.: New Approximation-Based Local
Search Algorithms for the Probabilistic Traveling Salesman Problem. In: Moreno-
Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS,
vol. 5717, pp. 681–688. Springer, Heidelberg (2009)

29. Aart, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Princeton
University Press, Princeton (2003)

30. Li, W.: Seeking Global Edges for Traveling Salesman Problem in Multi-Start
Search. Journal of Global Optimization 51, 515–540 (2011)

31. Li, W.: A Parallel Multi-Start Search Algorithm for Dynamic Traveling Salesman
Problem. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
65–75. Springer, Heidelberg (2011)

32. Li, W., Feng, M.: A Parallel Procedure for Dynamic Multi-Objective TSP. In:
Proceedings of 10th IEEE International Symposium on Parallel and Distributed
Processing with Applications, pp. 1–8. IEEE Computer Society (2012)

33. Sudman, S.: Applied Sampling. Academic Press, New York (1976)
34. Walson, J.: How to Determine a Sample Size. Penn Cooperative Extension,

University Park, PA (2001)



Unsupervised Classifier Based on Heuristic
Optimization and Maximum Entropy Principle

Edwin Aldana-Bobadilla and Angel Kuri-Morales

Universidad Nacional Autónoma de México, Mexico City, Mexico
Instituto Técnologico Autónomo de México, México City, Mexico

ealdana@uxmcc2.iimas.unam.mx,
akuri@itam.mx

Abstract. One of the basic endeavors in Pattern Recognition and par-
ticularly in Data Mining is the process of determining which unlabeled
objects in a set do share interesting properties. This implies a singu-
lar process of classification usually denoted as "clustering", where the
objects are grouped into k subsets (clusters) in accordance with an ap-
propriate measure of likelihood. Clustering can be considered the most
important unsupervised learning problem. The more traditional cluster-
ing methods are based on the minimization of a similarity criteria based
on a metric or distance. This fact imposes important constraints on the
geometry of the clusters found. Since each element in a cluster lies within
a radial distance relative to a given center, the shape of the covering or
hull of a cluster is hyper-spherical (convex) which sometimes does not
encompass adequately the elements that belong to it. For this reason
we propose to solve the clustering problem through the optimization
of Shannon’s Entropy. The optimization of this criterion represents a
hard combinatorial problem which disallows the use of traditional opti-
mization techniques, and thus, the use of a very efficient optimization
technique is necessary. We consider that Genetic Algorithms are a good
alternative. We show that our method allows to obtain successfull results
for problems where the clusters have complex spatial arrangements. Such
method obtains clusters with non-convex hulls that adequately encom-
pass its elements. We statistically show that our method displays the
best performance that can be achieved under the assumption of normal
distribution of the elements of the clusters. We also show that this is a
good alternative when this assumption is not met.

Keywords: Clustering, Genetic Algorithms, Shannon’s Entropy,
Bayesian Classifier.

1 Introduction

Pattern recognition is a scientific discipline whose purpose is to describe and
classify objects. The descriptive process involves a symbolic representation of
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these objects called patterns. In this sense, the most common representation is
through a numerical vector x:

x = [x1, x2, . . . xn] ∈ �n (1)

where the n components represent the value of the properties or attributes of an
object. Given a pattern set X , there are two ways to attempt the classification:
a) Supervised Approach and b) Unsupervised Approach.

In the supervised approach, ∀x ∈ X there is a class label y ∈ {1, 2, 3, ..., k}.
Given a set of class labels Y corresponding to some observed patterns x (“train-
ing” patterns), we may postulate a hypothesis about the structure of X that is
usually called the model. The model is a mathematical generalization that allows
us to divide the space of X into k decision regions called classes. Given a model
M , the class label y of an unobserved (unclassified) pattern x′ is given by:

y = M(x′) (2)

On the other hand, the unsupervised approach consists in finding a hypothesis
about the structure of X based only on the similarity relationships among its
elements. The unsupervised approach does not use prior class information. The
similarity relationships allow to divide the space of X into k subsets called
clusters. A cluster is a collection of elements of X which are “similar” between
them and “dissimilar” to the elements belonging to other clusters. Usually the
similarity is defined by a metric or distance function d : X ×X → �.

In this work we discuss a clustering method which does not depend explic-
itly on minimizing a distance metric and thus, the shape of the clusters is not
constrained by hyper-spherical hulls. Clustering is a search process on the space
of X that allows us to find the k clusters that satisfy an optimization criteria.
Mathematically, any criterion involves an objective function f which must be
optimized. Depending on the type of f , there are several methods to find it.
Since our clustering method involves an objective function f where its feasible
space is, in general, non-convex and very large, a good optimization algorithm
is compulsory. With this in mind, we made a comprehensive study [13] which
dealt with the relative performance of a set of structurally different GAs and a
non-evolutionary algorithm over a wide set of problems. These results allowed
us to select the statistically “best” algorithm: the EGA [20]. By using EGA we
may be sure that our method will displays high effectiveness for complex
arrangements of X .

The paper is organized as follows: In Section 2, we briefly show the results that
led us to select the EGA. Then we present the different sets of patterns X that
will serve as a the core for our experiments. We use a Bayesian Classifier[2,4,8]
as a method of reference because there is theoretical proof that its is optimal
given data stemming from normal distributions. In this section we discuss the
issues which support our choice. In Section 3 we discuss the main characteristics
of our method and the experiments which show that it is the best alternative.
In Section 4 we present our general conclusions.
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2 Preliminaries

As pointed out above, a “good” optimization algorithm must be selected. We
rest on the conclusions of our previous analysis regarding the performance of
a set of GAs[13] . Having selected the best GA, we prove the effectiveness of
our clustering method by classifying different pattern sets. To this effect, we
generated pattern sets where, for each pattern, the class of the objects is known.
Hence, the class found by our clustering method may be compared to the true
ones. To make the problems non-trivial we selected a non-linearly separable
problems. We discuss the process followed to generate these sets. Finally, we
resort to a Bayesian Classifier [4] in order to show that the results obtained by
our method are similar to those obtained with it.

2.1 Choosing the Best Optimization Algorithm

This section is a very brief summary of the most important results found in [13].
A set A of 4 structurally different GAs and a non-evolutionary algorithm (NEA)
was selected in order to solve, in principle, an unlimited supply of systematically
generated functions in � × �(called unbiased functions). An extended set of
such functions in �×�2 and �×�3 was generated and solved. Similar behavior
of all the GAs inA (within statistical limits) was found. This fact allowed us
to hypothesize that the expected behavior of A for functions in � × �n will be
similar. As supplement, we tackled a suite of problems (approximately 50) which
includes hard unconstrained problems (which traditionally have been used for
benchmarking purposes) [19,3] and constrained problems [11]. Lastly, atypical
GA-hard functions were analyzed [18,16].

Set of Algorithms. The set A included the following GAs: a)An elitist canoni-
cal GA (in what follows referred to as TGA [eliTist GA]) [21], b) A Cross genera-
tional elitist selection, Heterogeneous recombination, and Cataclysmic mutation
algorithm (CHC algorithm) [5], c) An Eclectic Genetic Algorithm (EGA) [20],
d) A Statistical GA (SGA) [23,12] and e) A non-evolutionary algorithm called
RMH [17].

Table 1 shows the relative global performance of all algorithms for the func-
tions mentioned. The best algorithm in the table is EGA.

Table 1. Global Performance

Ai Unbiased Suite Atypical Global Performance Relative
EGA 9.64 8.00 4.48 7.37 100.00%
RMH 6.24 0.012 2.04 2.76 37.49%
TGA 1.35 1.16 4.77 2.43 32.91%
SGA 1.33 0.036 3.33 1.57 21.23%
CHC 2.12 0.08 2.10 1.43 19.44%
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2.2 The Pattern Set

Given a set of patterns to be classified, the goal of any classification technique
is to determine the decision boundary between classes. When these classes are
unequivocally separated from each other the problem is separable; otherwise,
the problem is non-separable. If the problem is linarly separable, the decision
consists of a hyperplane. In Figure 1 we illustrate ths situation.

(a) Linearly Separable patterns (b) Non-linearly separable
patterns

Fig. 1. Decision boundary

When there is overlap between classes some classification techniques (e.g.
Linear classifiers, Single-Layer Perceptrons [8]) may display unwanted behavior
because decision boundaries may be highly irregular . To avoid this problem
many techniques has been tried (e.g. Support Vector Machine [9], Multilayer
Perceptrons [22]). However, there is no guarantee that any of this methods will
perform adequately. Nevertheless, there is a case which allows us to test the
appropriateness of our method. Since it has been proven that if the classes are
normally distributed, a Bayesian Classifier yields the best possible result (in
Section 2.3 we discuss this fact) and the error ratio will be minimized. Thus,
the Bayesian Classifier becomes a good method with which to compare any
alternative clustering algorithm.

Hence, we generated Gaussian pattern sets considering singular arrangements
in which determining the decision boundaries imply non-zero error ratios. With-
out loss generality we focus on patterns defined in �2. We wish to show that the
results obtained with our method are close to those obtained with a Bayesian
Classifier; in Section 3, the reader will find the generalization of our method
for �n.
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Gaussian Patterns in �2 . Let Xj be a pattern set defined in �2 and Ci ⊂ Xj

a pattern class. A pattern x = [x1, x2] ∈ Ci is drawn from a Gaussian distribution
if its joint probability density function (pdf) is given by:

f(x1, x2) =
1

2πσx1σx2

√
1− ρ2

e

(
− 1

2(1−ρ2)

[(
x1−μx1

σx1

)2
−2ρ

(x1−μx1 )(x2−μx2 )

σx1σx2
+

(
x2−μx2

σx2

)2])

(3)

where −1 < ρ < 1, −∞ < μx1 < ∞, −∞ < μx2 < ∞, σx1 > 0, σx2 > 0. The
value ρ is called the correlation coefficient.

To generate a Gaussian pattern x = [x1, x2], we use the acceptance-rejection
method [1,10] which allows us to generate random observations (x1, x2) that
are drawn from f(x1, x2). In this method, a uniformly distributed random point
(x1, x2, y) is generated and accepted iff y < f(x1, x2). In Figure 2.1 we show
different pattern sets obtained by applying this method with distinct statistical
arguments in (3)

Fig. 2. Different Gaussian pattern sets with μx1 = μx2 = 0.5,σx1 = σx2 = 0.09. Each
set was generated with different correlation coefficient: a. ρ = 0.0, b. ρ = −0.8, c.
ρ = 0.8.

The degrees of freedom in (3) allow us to generate Gaussian pattern sets
with varied spatial arrangements. In principle, we analyze pattern sets with the
following configurations:

– Sets with disjoint pattern classes.
– Sets with pattern classes that share some elements (partial overlap between

classes)
– Sets with pattern classes whose members may share most elements (total

overlap).

We proposed these configurations in order to increase gradually the complexity
of the clustering problem and analyze systematically the performance of our
method. In the following subsections, we make a detailed discussion regarding
the generation of sets with these configurations.


