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J. Schröder, Essen, Germany
B. Weigand, Stuttgart, Germany

For further volumes:

http://www.springer.com/series/8445



Sergey S. Stepanov

Stochastic World

ABC



Sergey S. Stepanov
Dneropetrovsk
Ukraine

ISSN 2192-4732 ISSN 2192-4740 (electronic)
ISBN 978-3-319-00070-1 ISBN 978-3-319-00071-8 (eBook)
DOI 10.1007/978-3-319-00071-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013939583

c© Springer International Publishing Switzerland 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This book is based on the expanded lecture notes formed during the statistics
course for the employees of the company “Altus Assets Activities”, which
was organized by the Center of Fundamental Research. The main aim of
the lectures was to give a quick and simple introduction to the stochastic
differential equations, at the same time keeping the argumentation conclusive.

Stochastic processes appear in different financial, biological and physical
systems. The corresponding mathematical approach, even though it deals
with highly non-trivial entities, is quite simple. We believe that, for the
practical applications, the informal understanding of the practical methods
is more important on the initial stage than their strict axiomatic justification.
Unlike most common methodology we will only occasionally use stochastic
integration. This will simplify the reasoning significantly, and we will be able
to proceed to the practical applications directly.

The recommended way of studying the material by chapters can be pre-
sented with a following diagram:

The first six chapters form the core of the book and cover the basics of the
stochastic math. The seventh and eighth chapters (as well as their individual
sections) are dedicated to the applications and can be read in any order. In
the ninth chapter the numerical computer modeling of stochastic processes
is considered and it would help if the reader has basic knowledge of some
programming language.

Throughout the text small problems are scattered; they are denoted with
the character (�Hi), where i is the number of the solution in the Appendix
“Help”. There are also links, marked by (�Ci), which should be followed only
in case some questions arise while reading; the answer could be found in the
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Appendix “Endnotes” with the number i. The asterisk* marks the sections
that can be skipped on the first reading.

In addition to the appendixes “Help” and “Endnotes” the book contains
“Mathematical appendix” and “Stochastic manual”. The first one collects the
actively used definitions and formulas of probability theory, mathematical
and tensor analysis; the second one presents various formulas of stochastic
math.

The “Stochastic manual” may also be useful for the Reader who is already
familiar with stochastic differential equations. However, it is strongly recom-
mended to first read the page 40 and look through the sections §2.8, p. 53,
and §5.1, p. 109.
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Chapter 1
Random Events

Absolutely deterministic events and processes do not exist. The Universe
speaks to us in the language of probability theory. We assume that the
Reader is familiar with the basics of probability, therefore, only those terms
and concepts that are necessary for the understanding of further material are
introduced.

The first section is introductory; it is concluded with the necessity of using
stochastic differential equations when studying various systems. After that
the concept of probability density is discussed, which allows to compute the
mean values of observable variables. The Gaussian probability distribution
lies in the basis of noise, which influences the deterministic dynamics. Both
stochastic dependencies and independencies between random variables are
important when searching for the relation between different objects and their
characteristics. “The Model of Additive Random Walk ” is the key section of
the chapter. The generalization of this simple model leads to the stochastic
differential equations in the next chapter. The last section “Martingales and
the Free Cheese ” includes a number of formal definitions that can be skipped
if necessary. Before reading the chapter it would be useful to look through the
elements of the probability theory in the Mathematical Appendix on p. 239.

1.1 Stochastic World

• Thanks to the works of Newton and Leibnitz the scientists have differential
equations at their disposal. If some values vary with time, there is the set of
equations which describes this dynamics.

A situation when the quantity change is proportional to the quantity itself
is commonly encountered. This is the simplest example:

dx

dt
= αx => x(t) = x0 e

αt. (1.1)

The function x(t) > 0 can describe the quantity of rabbits for which the rate
of reproduction increases along with the increase in their present quantity.

S.S. Stepanov, Stochastic World, Mathematical Engineering, 1
DOI: 10.1007/978-3-319-00071-8_1, © Springer International Publishing Switzerland 2013
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Another example can be taken from the economics. The dynamics of means
of production growth increases along with their accumulated quantity. The
increase of population according to Malthus can also serve as an example.
If α > 0, this equation is called a growth equation, otherwise it is called a
decay equation. There is an arbitrary constant x0 in the solution. In order
to determine it, it is necessary to set the initial quantity of the rabbits: for
example, x0 = x(0) > 0 at time t0 = 0.

The exponential function grows very quickly. If rabbits were to reproduce
according to this equation all the time, the Earth would have soon become
completely white and fluffy. In reality they are not only reproducing but
also dying. The relative change of the population size dx/x = Adt can be
a function of x in the general case. Let’s expand it in the series A(x) =
α− β x + ... up to the order of linear dependency. The second term has the
meaning of relative deceleration of rabbit population due to natural resource
depletion (the lack of grass). The process is getting even more intensive along
with the population size growth. As a result the more realistic equation leads
to the logistic function, which reaches the stationary value α/β at a certain
moment in time (when α > 0):

dx

dt
= αx− βx2 => x(t) =

α

β − (β − α/x0) e−αt
. (1.2)

The solution to the equation (1.2) can be obtained (�H1) after the substitu-
tion x(t) = 1/y(t). Asymptotically (t→ ∞), the equilibrium value x∞ = α/β
can be easily found from the equation, where dx/dt = 0 (�C1). It is worth
mentioning that (1.2) can also be applied to the primates who consider them-
selves sapient and live on the planet with limited resources. However, the
logistic equation itself has the flavor of cannibalism (�C2).

• Differential equations were first used in classical mechanics. The force
F (x) applied to a particle changes its momentum p = mẋ:

{
ṗ = F (x)
ẋ = p/m,

(1.3)

where a dot over a variable denotes the time derivative ẋ = dx/dt and m is
the particle mass. For example, in case the force is linear F (x) = −kx, the
coordinate exhibits oscillatory behaviour x(t) = x0 cos(wt)+(p0/ωm) sin(wt)
with the frequency w =

√
k/m (�H2). As there are two equations, the solu-

tion contains two constants, and it is necessary to set two initial conditions
for the coordinate x0 = x(0) and the momentum p0 = p(0).

Most economical, biological and physical systems can be described by the
system of differential equations:

dx = a(x, t) dt, (1.4)

where x(t) = {x1(t), ..., xn(t)} is a vector of variables that describe the state
of the system. The vector function a(x, t) determines its dynamics.
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Any differential equations that contain second and higher derivatives can
be reduced to the system (1.4) by introducing new dynamical variables. Dif-
ferential equations of motion in Hamiltonian form (1.3) can be a good example
of this statement.

Equation (1.4) describes the change of vector x(t) during the infinitesimal
time period dt. This representation gives a simple algorithm of numerical
integration of the equations (1.4) in the situation when the analytical solution
cannot be obtained. For this purpose the infinitesimal changes are replaced
with small but finite ones Δx = xk+1 − xk, Δt = tk+1 − tk. As a result,
Eq. (1.4) corresponds to the discrete iteration scheme:

xk+1 = xk + a(xk, tk)Δt. (1.5)

Given the initial vector x0 we can obtain its new value x1 after the time period
Δt. Then x1 substitutes x0 and we get x2. By repeating this procedure it
is possible to obtain the sequence of vector values x(t) in discrete points in
time t0, t1 = t0 + Δt, t2 = t0 + 2Δt, etc. The smaller the time period Δt
is, the closer the numerical values of the scheme (1.5) approach the “true”
solution of equation (1.4).

If the vector function a(x, t) is smooth, the solution of the system of equa-
tions is also a set of smooth functions. Here we use the term “smoothness”
quite informally. It means that such functions are differentiable on the whole
domain of their arguments.

• Differential equations are ubiquitous in natural sciences. The progress
of science within the last three centuries is amazing. However, the thorough
comparison of theoretical results with experimental data shows that ordinary
differential equations are only part of the truth.

In most situations the studied systems are subjected to unpredictable ex-
ternal influences which make their dynamics less smooth. The stone which
flies along a parabola complies with the mathematical curve as a rough ap-
proximation only. Its inevitable contact with the air results in certain fluctu-
ations around this trajectory. Even bigger irregularity can be found when we
consider small objects like Brownian pollen which are exposed to the irregular
molecular strokes. They follow the broken-line trajectory. The complexity of
this trajectory x(t) is so great that its time derivative does not exist.

The importance of stochastic processes increases along with the struc-
tural complexity of natural and social systems. Rabbits multiply according
to the logistic equation as a rough approximation only. The fluctuations
of the population size caused by the internal and external random factors,
which are not considered in the simple model (1.2), are significant indeed.
Correspondingly, the economic growth has an exponential form only as first
approximation. In reality the function x0eαt is significantly distorted by eco-
nomic ups and downs that have stochastic nature and are difficult to predict.
Thus, randomness is dominant in the financial world. It determines the inner
character of markets. Therefore stochastics is not a negligible correction but
the main approximation to the reality like that for the Brownian movement.
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Thus, our world is not deterministic. Its real nature is stochastic:

The ordinary differential equations are only a rough approximation of
the reality. The stochastic equations provide more adequate research
instrument (�C3).

The corresponding mathematical formalism will be described further in these
lectures. It allows combining two completely different entities: deterministic
smooth dynamics and uneven broken-line random processes.

In case “the noise component” of a stochastic differential equation is small,
its solution will be smooth enough. The gradual increase of noise part makes
the contribution of stochastic dynamics dominating.

As for the external noise that breaks the smooth dynamics, we assume
that the following stochastic equation is satisfied:

dx = a(x, t) dt +Noise(x, t, dt). (1.6)

It describes both the deterministic (the first term) and the random (the sec-
ond one) change of system state variables x. As dx is considered to be small,
the noise will decrease along with the time period dt. Our discussion will be
devoted to the introduction of noise with certain properties Noise(x, t, dt)
into differential equations.

The noise can change in time (see the dependency on t) and may also
depend on the value of dynamic variables x. The explicit functional depen-
dency on x and t is specific to the given problem, and its determination often
requires some complicated empirical research.

Let us consider the random function x(t) which is a solution to the stochas-
tic equation. Usually it would be very different from the “well-behaved” func-
tions of mathematical analysis. In we look at a strongly irregular ordinary
function under “magnifying glass”, we can see that it turns out to be smooth
at small scale. A stochastic, random function would stay broken at any scale:

x(t) x(t)

tt

Despite the fact that the random function x(t) is assumed to be continuous,
as a rule it is non-differentiable. Indeed, since the derivative is defined as
[x(t +Δt) − x(t)]/Δt as Δt tends to zero, in case of stochastic functions no
matter how small the time period is, the direction of the function change can
have an unpredictable sign due to random factors. Therefore no convergence
to the definite limit can be obtained. Other facts from mathematical analysis
have to be reconsidered for such dx as well.
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The methods of solving the equations like (1.6) are of great importance.
In cases when the exact solution cannot be found, we can use the numerical
modeling or approximate analytical methods. There is no need to remind that
any mathematical tool is developed to get more powerful means of studying
the surrounding world. So it is necessary to see the real random process in
finance, physics or biology behind each equation or its solution.

1.2 Random Variables

• Consider a random variable with its observed values which give us the set
of numbers x1, x2, ... These can be the quotes of daily stock prices or the
coordinates of a Brownian particle. The numbers x1, x2, ... can be consid-
ered as possible realizations of the random variable x. In the first stage of
investigation the ordering of numbers xi doesn’t matter. For example, this
sequence can be randomly shuffled.

Assume that xi occurs ni times and the total quantity of numbers is equal
to n. The following expression is called the mean value of random variable x:

x̄ = 〈x〉 = 1

n

∑
i

xini =
∑
i

xipi =

∞∫
−∞

x P (x) dx, (1.7)

where pi = ni/n are the relative frequencies (or probabilities) of xi occurrence.
If all xi are different, the sample mean is equal to their sum divided by n.
The more probable xi is, the bigger contribution to the mean it gives due to
its more frequent occurrence.

The majority of financial or physical quantities are continuous. For the
infinite number of observations the sum is replaced by the integral. Probability
density function (pdf) is such a function P (x) which, when multiplied by the
interval dx, gives the probability pi that corresponds to the event that the
value x falls into the segment from x to x+ dx.

The probability of finding the value x at some point on a interval [−∞..∞]
is equal to the area under the curve P (x). As this is a certain event, it has
a unit probability:

P(x)dx = pi

x+dxx

P(x)

∑
i

pi =

∞∫
−∞

P (x)dx = 1. (1.8)

This equation is called a normalization condition.
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Sometimes the random variable has “forbidden” values. For example, the
price or the number of rabbits are always positive. In this case the probability
of finding x in the range x < 0 is equal to zero. When calculating the mean we
will often integrate from negative to positive infinity. Therefore probability
density function must be equal to zero in the “forbidden” intervals of the
random variable.

• If the probability density function is known, it is possible to find the
mean of an arbitrary deterministic function F (x) of random variable x:

〈F (x)〉 = F (x) =

∞∫
−∞

F (x) P (x) dx.

Going forward in this book we will be denoting the procedure of averaging
by two equivalent notations – braces or overline. The notation EF (x) is also
common in mathematical and financial literature.

Since the mean is a sum (or an integral), the mean of the sum of two
functions is equal to the sum of their means. In addition, it is possible to
move a multiplicative constant out of the mean sign:

〈αf(x)〉 = α 〈f(x)〉 , 〈f(x) + g(x)〉 = 〈f(x)〉+ 〈g(x)〉 .

But that’s all! In general, non-linear functions cannot be moved out of the
mean sign:

〈
x2
〉 �= 〈x〉2.

• Volatility σ is another important characteristics of a random variable:

σ2 =
〈
(x − x̄)2

〉
=

∞∫
−∞

(x− x̄)2 P (x) dx.

In “non-financial” applications volatility σ is usually called a standard devi-
ation. Its square is a variance: σ2 = Var(x). Being a constant, the mean x̄
can be moved out of the mean sign, therefore,

σ2 =
〈
(x− x̄)2

〉
=
〈
x2 − 2xx̄+ x̄2

〉
=
〈
x2
〉− 2x̄ 〈x〉+ x̄2 =

〈
x2
〉− 〈x〉2 .

If the probability density function of a continuous random variable has a
single symmetric peak, then its mean is a good characteristics of “the most
typical” value of x. Volatility is the typical deviation of x from its mean. The
smaller is σ, the narrower is the probability density function P (x). As σ → 0,
the random variable is becoming almost completely deterministic with the
value x = x̄.
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It is possible to define the higher moments by analogy with variance. Thus,
the dimensionless expressions

asym =
〈
(x− x̄)3

〉
/σ3, excess =

〈
(x− x̄)4

〉
/σ4 − 3 (1.9)

are called skewness (asymmetry) and kurtosis (excess). Skewness is the char-
acteristics of the “asymmetry” of probability density. It is equal to zero for
a symmetric function P (x). When kurtosis takes a big positive value, P (x)
decreases slower while moving away from the mean than when it is negative.

• Gaussian probability density, or the normal distribution, occurs very of-
ten. Bellow, we denote the corresponding random variable by ε. We will
not distinguish the notation for the random variable ε and the variable in its
probability density. It looks as follows for the normal distribution:

P( )

0

0.40

0.24

0.05

1-1-2 2

P (ε) =
e−

1
2 ε

2

√
2π

(1.10)

The mean of ε is equal to zero 〈ε〉 = 0; the mean of its square is equal to
a unit correspondingly:

〈
ε2
〉
= 1. Therefore, the variance is also a unit:

σ2
ε = 1. Further, let us introduce the following notation: ε ∼ N(0, 1). If we

consider the random variable x = μ+ σ ε, it will have mean μ and volatility
σ, thus x ∼ N(μ, σ2). (�C4)

It is useful to know the form of the moment-generating function for Gaus-
sian quantities, which is defined as the mean of the exponential function [see
(14), p. 255]:

〈eαε〉 =

∞∫
−∞

eαε P (ε) dε = eα
2/2. (1.11)

Series expansion by parameter α of the left and right sides of (1.11) makes it
possible to easily find the means of arbitrary powers 〈εn〉 (�H3).

Particularly,
〈
ε4
〉

is equal to 3 and so excess = 0. Substraction of 3 from
the dimensionless fourth moment in the definition of kurtosis (1.9) is related
to our desire to compare everything to the normal distribution. If excess > 0,
then the distribution is likely to have “fat tails”, i.e. it lies above the normal
distribution line (for x → ±∞). If kurtosis is negative, the situation is
opposite and the distribution tails lie below the normal plot.
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The integral distribution:

F (x) =

x∫
−∞

e−ε
2/2

√
2π

dε (1.12)

is the probability of the following event: the random variable is equal to or
less than x.

• If probability density function P (x) of x is known, then it is possible to
find the probability density of another random variable y that is related to
x according to a certain functional dependency y = f(x). For this purpose
the mean of an arbitrary function F (y) is calculated. This can be done by
averaging with the known probability density function P (x):

〈F (y)〉 =
∞∫

−∞
F
(
y
)
P̃ (y) dy =

∞∫
−∞

F
(
f(x)

)
P (x) dx. (1.13)

As P̃ (y) is not known, let us integrate with P (x) and substitute y = f(x)
into F (...). It is possible to convert the second integral into the first one with
the reverse substitution. The multiplier at F (y) in the integrand appears to
be the required probability density function P̃ (y) for y.

Consider the random variable r = μ+ σ ε as an example. Let it have the
normal distribution with the mean μ and the volatility σ. Let us find the
distribution for x = x0 e

r, where x0 is constant:

〈F (x)〉 =
∞∫

−∞
F
(
x0e

μ+σ ε
)
e−ε

2/2 dε√
2π

=

∞∫
0

F (x) e−[ln(x/x0)−μ]2/2σ2 dx

xσ
√
2π
.

The first integral gives the expression for the mean with the normal distribu-
tion. The following substitution is made there: x = x0 e

μ+σε, dx = σxdε. As
a result, for x � 0 we get:

PL(x) =
1

xσ
√
2π

exp

[
− (ln(x/x0)− μ)2

2σ2

]
. (1.14)

The probability PL(x) is called lognormal distribution. As an exercise, one
can calculate the mean 〈x〉 using PL(x) or Gaussian density P (ε) (�H4).
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• When using the random variables in the expressions like x = μ+ σε, we
don’t perform arithmetic operations with specific numbers. Instead a poten-
tial calculations are demonstrated: “if ε appears to be equal to some values,
then x ...” Sometimes a distinction is made in notation when calculating the
mean between a random variable denoted with the capital letter X and an
integration variable which is denoted with the small letter x. We are not
going to do it here.

1.3 Conditional and Joint Probability

• Consider two random variables x and y and the pairs of their observed values
{x1, y1}, {x2, y2}, and so on, that occur with a certain frequency. We can
now define the joint probability density P (x, y) of the event that the quantities
take certain values in the neighborhood of x and y. Joint probability allows
us to calculate the mean of an arbitrary two-variable function:

〈F (x, y)〉 =
∞∫

−∞
F (x, y)P (x, y) dx dy. (1.15)

If we are not interested in y value, P (x, y) can be integrated over all possible
realizations of this quantity. As a result, we receive the probability density
only for x:

∞∫
−∞

P (x, y) dy = P (x). (1.16)

If after that we integrate the left and the right sides by x we get a unit. For
this reason a condition of normalization has the form of a double integral. It
can be obtained from (1.15) if F (x, y) is set to 1, as 〈1〉 = 1.

Simultaneous studying of x and y doesn’t necessarily mean their obligatory
coincidence in time. For example, in finance x may be the daily price change
of a European stock index and y is the corresponding change of an American
stock index which is traded after the European one. There is the causal
relation between them separated in time. On the other hand the daily price
change of two stocks x and y happens simultaneously and depends on external
synchronizing factors (news, macroeconomics).

As one can see in the following section the joint probability density P (x, y)
is extremely important if there is a certain dependency between two random
variables. This relation can be expressed as a function y = f(x). Then,
in case a certain value is realized for x, the quantity y will be fully pre-
determined. However, the following case is more frequent: y = f(x, ξ),
where ξ is another “non-observable” random variable. It might be an un-
predictable external impact that changes the parameters of functional de-
pendency y = f(x), or the dynamic variable which was not taken into
consideration in the simpler model.
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• In addition to the joint probability of two quantities x and y it is conve-
nient to introduce a conditional probability density. It answers the following
question: what is the probability of y if the value of x is already known? The
conditional density is equal to the joint density P (x, y) normalized by the
probability of already available information P (x) (see p. 242 in appendix М):

P (x⇒ y) =
P (x, y)

P (x)
. (1.17)

Let us take the normal distribution (1.10) as an example of P (x), while for
joint probability density P (x, y) let us take the “two-dimensional displaced”
normal plot:

P (x, y) =
e−(x2+y2+

√
2xy)

π
√
2

, P (x⇒ y) =
e−(x2/2+y2+

√
2 xy)

√
π

.

The joint and conditional probabilities are shown in the figure below:

The volume under P (x, y) is equal to a unit while the volume under P (x⇒ y)
is equal to infinity. Normalization of conditional probability has the meaning
of obtaining any value y for the a given x:

∞∫
−∞

P (x⇒ y) dy = 1. (1.18)

It is worth verifying that the formula (1.18) agrees with (1.16).
Let us note that the following notation is more common for conditional

probability: P (y|x). But it will be shown further that P (x ⇒ y) appears to
be more natural notation when describing the chains of events connected to
each other. In any case P (x ⇒ y), like P (x, y), is the function of two real
arguments.

Conditional probability is important as it allows to link different events
with each other, manifesting their cause-effect relation.
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• Consider probabilistic properties of the English language. Each of 28 let-
ters including space “_” and apostrophe has its own probability of occurrence
in a text:

p(_) = 0.192, p(e) = 0.099, p(t) = 0.074, ..., p(z) = 0.0005.

If we need to find the probability of certain substring, e.g. “th” to appear in
a random place, we have to count occurrences of such substrings and divide
it by total number of all substrings like “**”, where asterisk is any character.
In order to calculate the conditional probability P (t ⇒ h) of the occurrence
of letter “h” conditioned on the fact that there is letter “t” before it, we
will need to select all substrings that satisfy the pattern “t*” (“t”, then any
character “*”) and find out how many “th” there are among them. This
results in:

p(th) = N(th)/N(∗∗) = 0.024, p(t ⇒ h) = N(th)/N(t∗) = 0.328,

where N is the number of substrings that satisfy the corresponding mask.
For a text that has n characters: N(∗∗) = n − 1 and N(t∗) = p(t)n. The
number of both joint and conditional probabilities for two letters equals to
282 = 784.

The probability of finding a specific letter in a text depends on the prehis-
tory (previous letters). For example, the probability of “h” occuring after “t”
is 6.5 times higher than the absolute probability of “h” occur: p(h) = 0.050.
Vice versa, some combinations of letters are very difficult to pronounce. E.g.
“z” is very unlikely to appear after “q”.

Knowing the conditional probabilities we can create synthetic texts. Thus,
the new letter “x” will be generated with probability

p(...cba ⇒ x)

according to the known prehistory “...cba”. The longer is the history on
which we condition, the more “euphonious” combinations will appear in such
text:

� P (x): teiesgeo sn lsdupeaguylohsnnr a soontwe as ihh leoaanhe lttaea iv
a ebtaeeeedcfroi oone shcw nihdeeetn h gelhrrnn;

� P (a ⇒ x): hescer man plyocerkn’ma mofind maritathes hilel whed inond
as hr s threr ath ruprout win modangeno at oun y d ct o;

� P (ba ⇒ x): and bea me mor laysid usal barry inted is that se pand wit
com a saught i’m the drupoing on to yession the as rettly;

� P (cba ⇒ x): wild the sames resough wered in his do in him for i do said
in ver through this can one oth pret be the dog frient.

In the first case only unconditional probabilities are used and prehistory is
not taken into consideration at all. In the second case a single previous letter
is used to determine the next, etc.
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• As a second example let us use the data of daily closing prices xt of the
stock index S&P500. First calculate its log returns

rt = ln(xt/xt−1)

in percentage terms (�C6). Then discretize the values into the five intervals:

(−∞...− 3%), [−3%...− 1%), [−1%...+1%], (+1%...+3%], (+3%...+∞).

Therefore, the market state is characterized by one of the five possibilities:
starting from “panic” (−∞...− 3%) and ending with “euphoria” (+3%...∞).
As such, each rt turns into a discrete random variable which can take five
values. This values are not returns anymore. These are the market states
numbers, e.g. -2,-1,0,1,2.

It is possible to consider the joint probability p(rt−1, rt) of an event that
two consecutive days have the states rt−1 and rt. Every day one of five
possibilities realizes, so there will be 25 = 52 different combinations of the
following states for two consecutive days: {(0,0); (0,1); (0,-1);...}. Between
1990 and 2007 there were n = 4531 trading days. Occurrence of each state
revealed the following values for the probabilities:

p(r) =
(
0.007 0.110 0.761 0.125 0.007

)
.

In order to calculate them we have to count the number of trading days in
every state; after that we need to divide them by n. The calm days are the
most typical for the market [−1%...+1%]. They took place 3451 = 0.76 ·4531
times during the considered period. Similarly to the letters from the previous
example, conditional probabilities can be calculated:

p(rt−1 ⇒ rt) =

⎛
⎜⎜⎜⎜⎝

0.067 0.167 0.400 0.267 0.100
0.022 0.146 0.651 0.168 0.014
0.004 0.107 0.783 0.102 0.004
0.006 0.084 0.759 0.138 0.013
0.000 0.303 0.515 0.152 0.030

⎞
⎟⎟⎟⎟⎠ .

The first row in this matrix corresponds to the state transition from “panic”
yesterday to one of five possible states today. In the same way the last row
includes the conditional probabilities of state transition from “euphoria”. It
is notable that the probabilities of state transition from “calm” market (the
middle row) are very close to the unconditional probabilities p(r). In case
the market was not calm yesterday, probabilities differ from the daily ones.
It is especially clear (�C5) for the extreme states of “panic” and “euphoria”.
Since the probability that some state will happen next is equal to a unit, the
sum of the numbers in each row is also equal to one [see (1.18)].
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1.4 Dependency and Independency

• Quantities are statistically independent if their joint probability density is
equal to the product of the probability distributions of each quantity:

P (x, y) = P1(x)P2(y) .

We will often be omitting the indexes here and will be using the same letter
to denote different functions distinguishing them by an argument. It follows
from the definition (1.17) that for independent events the conditional pro-
bability density P (x ⇒ y) = P (y) depends only on y. This equation can be
considered as another definition of event independency. If the occurrence of
event y doesn’t depend on the fact whether the event x took place or not,
then they are independent.

The mean of a product of several independent quantities is equal to the
product of their means:

〈x y〉 =
∞∫

−∞
x y P (x)P (y) dxdy = 〈x〉 〈y〉 .

So, the covariance

cov(x, y) = 〈(x− x̄)(y − ȳ)〉 = 〈xy〉 − 〈x〉 〈y〉 (1.19)

between independent quantities is equal to zero. Note, that the opposite
statement can be false (�C7).

• The function z = f(x, y) of two random variables x and y is also the
random variable with a certain distribution P (z). In order to find P (z), we
need to transform the formula for the mean of an arbitrary function F (z) in
such a way that it turns into an integral by z only:

〈F (z)〉 =
∞∫

−∞
F
(
f(x, y)

)
P (x, y) dxdy =

∞∫
−∞

F (z)P (z) dz. (1.20)

E.g., if x and y are independent Gaussian numbers with the arbitrary volatil-
ities σx, σy, then the quantity z = x+ y is also Gaussian:

〈F (z)〉 =
∞∫

−∞
F
(
x+ y

)
e−x

2/2σ2
x−y2/2σ2

y
dxdy

2πσxσy
=

∞∫
−∞

F (z)e−z
2/2σ2 dz

σ
√
2π
,

where σ2 = σ2
x + σ2

y . The following substitution is performed in the double
integral: z = x + y, u = x. Integration by u is carried out according to
the formula (14) on p. 255 of the Appendix M. Thus, the sum of two normal
quantities is also a normal quantity.
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• Let x and y be two independent random variables with arbitrary distri-
butions. Consider z which is their sum: z = x + y. As we discused before,
the mean is equal to the sum of means: z̄ = x̄+ ȳ. Find the variance:

σ2
z =

〈
(z − z)2

〉
=
〈
(x − x+ y − y)2

〉
= σ2

x + σ2
y + 2 〈(x − x) (y − y)〉 ,

where the square was expanded under the mean sign and the volatility of
each quantity was introduced, for example, σ2

x =
〈
(x− x̄)2

〉
. If (!) x

and y are independent, their covariance (the last term) is equal to zero:
〈(x− x) (y − y)〉 = 〈x− x〉 〈y − y〉 = 0. So,

σ2
z = σ2

x + σ2
y .

In general the following is true for the sum of n independent quantities:

z = x1 + ...+ xn => σ2
z = σ2

1 + ...+ σ2
n. (1.21)

To prove this we have to consider x1 +x2 as one random variable and obtain

σ2
z + σ2

3 = σ2
1 + σ2

2 + σ2
3

after adding x3 to it, and so on.
If the volatilities of each independent xi are the same and equal to σ0, the

volatility of their sum will increase with the number of terms as σz = σ0
√
n.

This square root relation between n and σ is extremely important. It lies
in the basis of all the Noise properties which we will add to deterministic
differential equations.

We emphasize that the obtained result (1.21) doesn’t depend on the dis-
tribution of quantities xi; they can even be different. The only condition is
that they must be independent.

We earlier derived the same result for the sum of two independent Gaussian
numbers. However, in that case the probability density turned out to be
Gaussian as well. A random variable z is called infinitely divisible if it can
be represented as a sum of independent random variables, which have the
same distribution as z (perhaps, with different parameters). The Gaussian
probability density is one example of an infinitely divisible distribution, others
are Cauchy distribution and gamma function, which are considered in the
next section.

In fact, it is enough for infinite divisibility that all three quantities in
z = x + y have the same distribution. Though the same functional form of
the distribution is implied, the parameters (in particular, volatility) can be
different. In general case, the sum of arbitrary distributed numbers has a
distribution that is different from the distribution of each term in the sum.
However, Eq.(1.21) is always true for independent quantities and turns out
to be a universal relation.
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• The simplest relation between two random variables x and y is a linear
dependence y = α + β x. In more general case there can be a third random
variable ξ, which is interpreted as an “external” random noise. The resulting
model (regression) parametrized by constants α and β looks as follows:

y = α+ β x+ ξ. (1.22)

The search of the relation between empirical quantities usually starts from
this equation.

Usually the mean value of the noise is assumed to be zero:

〈ξ〉 = 0.

Otherwise, it can be included in the parameter α. We require that the “noise”
variance ξ (the model error) is minimized:

σ2
ξ =

〈
ξ2
〉
=
〈
(y − α− β x)2

〉
= min. (1.23)

Taking the derivatives by α and β, it is possible (�H5) to find the equation
of the regression line. Its slope β is equal to

β =
〈xy〉 − 〈x〉 〈y〉
〈x2〉 − 〈x〉2 =

〈(x− x̄)(y − ȳ)〉
σ2
x

. (1.24)

Finally, we rewrite the equation in a symmetrical form of ratios of dimen-
sionless deviations from the means:

y − ȳ

σy
= ρ(x, y)

x− x̄

σx
+

ξ

σy
. (1.25)

The coefficient of this linear law is called correlation:

ρxy = ρ(x, y) =
cov(x, y)

σxσy
, (1.26)

and contains the covariance (1.19) in the numerator.
A non-vanishing correlation (ρ �= 0) between two quantities x, y doesn’t

necessarily mean the presence of a causal relation y = f(x) or x = g(y). For
example, there can be the third quantity z which influences both x and y
synchronizing their behavior. Thus, a recession in the world economy has
the same impact on two industries that are not connected to each other and
are both export-oriented. A “false” correlation also occurs when two quan-
tities have an explicit ascending or descending trend (a systematic increase
or decrease). In this case a significant correlation will appear between them.
This correlation shows the presence of a deterministic growth component
(�C8).



16 1 Random Events

• The correlation coefficient determines the slope of the regression line.
However, it is more important that it can be a measure of the linear model
forecast capability. Let us show this by substituting the initial equation (1.22)
into the Eq. (1.24) and take into account that 〈ξ〉 = 0 and ȳ = α+ β x̄:

β =
〈(x− x̄)(β (x − x̄) + ξ)〉

σ2
x

= β +
〈xξ〉
σ2
x

.

Thus, 〈xξ〉 = 0, which allows us to calculate the variance y:

σ2
y =

〈
(y − ȳ)2

〉
=
〈
(β (x− x̄) + ξ)2

〉
= β2σ2

x +
〈
ξ2
〉
.

As β = ρ(x, y)σy/σx, it is possible to obtain the expression for the relative
error of the model:

E =
σξ
σy

=
√
1− ρ2(x, y). (1.27)

The value of the noise volatility σ2
ξ =

〈
ξ2
〉

can be considered as the error of
the linear model y = α + βx. It is useful to compare it with the volatility
σy, which is the typical error of the trivial model y = ȳ. Let us note that
such relative error E depends on the correlation coefficient. The closer is its
square to 1, the smaller is the error. For vanishing ρ the relative error is equal
to 1. Correspondingly, the linear model has the same forecasting power as
the trivial statement that the best forecast for y is its mean. The coefficient
of determination

R2 = 1− E2 = ρ2

is also frequently used. Note that the absolute value of the correlation coef-
ficient is always less than one: |ρ| � 1.

• In conclusion, let us mention that the linear model (1.22) can be inter-
preted in different ways.

1) First, this is a forecasting model for y if x is known (like P (x ⇒ y)).
In this case ξ is an external noise, or the model error when the “true” depen-
dence between x and y is not that simple. In this case y always appears to
be a random variable because of the noise. As for x, there are different pos-
sibilities. For example, when studying a demand curve, x can be a product
price which is controlled and set by the researcher (e.g. equally spaced price
points). In this case it is deterministic. However, the dispersion of its values
allows formally determining the mean x̄ and the volatility σx.

2) It often happens that both x and y are equivalent random variables.
For example, the daily stock price changes of two companies x and y are
stochastically related to each other in the stock market. Both quantities are
random and aren’t affected by the researcher.
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1.5 The Characteristic Function

• The characteristic function Φ(q) is the Fourier transform (p. 257) of the
probability density of a random variable x:

Φ(q) =

∞∫
−∞

eıqx P (x) dx, P (x) =
1

2π

∞∫
−∞

e−ıqx Φ(q) dq.

Using this function, it is easy to get the mean values of arbitrary powers of
x. Doing one Fourier integration and finding the characteristic function, one
can receive 〈xn〉 by simple differentiation:

1

ın
dnΦ(q)

dqn

∣∣∣∣
q=0

=

∞∫
−∞

xn P (x) dx = 〈xn〉 .

The characteristic function can be represented as the mean of the exponent,
i.e.: Φ(q) = 〈eıqx〉. It is obvious that Φ(0) = 1. The coefficients of the series
expansion of Φ(q) by q are the means of the powers of x:

Φ(q) = 〈eıqx〉 =
∞∑
n=0

ın 〈xn〉
n!

qn = 1 + ı 〈x〉 q − 1

2

〈
x2
〉
q2 + ... (1.28)

Sometimes it is necessary to consider the real-valued variant of the character-
istic function obtained by the substitution q → q/ı and called the moment-
generating function: Φ(q/ı) = φ(q) = 〈eqx〉.

• Assume that a random variable y is connected with x according to a linear
dependency y = a+ b x. Then its characteristic function is the following:

Φy
(
q
)
= 〈eıqy〉 =

〈
eıq(a+bx)

〉
= eıqa

〈
eıqbx

〉
.

Thus, an additional phase factor appears in the linear transformation and
the argument q of Φ is scaled:

y = a+ b x => Φy(q) = eıqa Φx
(
b q
)
. (1.29)

If b = 0, then Φy(q) = eıqa. If we take into account the integral expression
for the Dirac delta function (p. 258), this leads to the probability density
P (y) = δ(y − a). We see that y is no longer a random variable, but a deter-
ministic constant y = a.
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• Let us give some examples of characteristic functions for several impor-
tant probability distributions:

Gauss : P (x) =
e−(x−x0)

2/2σ2

σ
√
2π

, Φ(q) = eıx0q−σ2q2/2.

Cauchy : P (x) =
a/π

(x − x0)2 + a2
, Φ(q) = eıx0q−a|q|.

Gamma : P (x) =
1

γΓ(μ)

(
x

γ

)μ−1

e−x/γ , Φ(q) =
1

(1− ıγq)μ
.

In order to find Φ(q) for the Gauss distribution it is necessary to complete
the square in the exponent. The Cauchy function Φ(q) is easier to check in
opposite direction, calculating P (x) from this function. In the third case a
straightforward integration is performed for the Gamma function according to
the formula (16), p. 256. Let us note that the Cauchy characteristic function
Φ(q) is not analytic and the distribution doesn’t have any finite moments
〈xm〉 for m > 1.

• Consider two independent random numbers x, y with the arbitrary distri-
butions P1(x), P2(y), and their sum z = x + y. Let us find the probability
distribution P (z) for the random variable z. For this purpose we calculate
the mean of an arbitrary function (the integration is from −∞ to ∞):

〈F (z)〉 =
∫
F (x+ y) P1(x)P2(y) dx dy =

∫
F (z) P1(x)P2(z − x) dx︸ ︷︷ ︸

P (z)

dz,

where the following substitution is made: y = z − x. So

P (z) =

∫
P1(x)P2(z − x) dx.

The characteristic function for the sum of two independent quantities is equal
to the product of their characteristic functions:

Φz(q) =
〈
eıq(x+y)

〉
= 〈eıqx〉 〈eıqy〉 = Φx(q)Φy(q),

where the fact that x and y are independent was used. It is obvious that in
general case of n independent random variables xi, the characteristic function
of their sum is equal to the product of the characteristic functions of every
term:

z = x1 + ...+ xn => Φz(q) = Φ1(q) · .. · Φn(q).
If the distributions of every xi are the same, we have Φz(q) = Φn(q). Now it
is possible to show that Gauss, Cauchy and gamma distributions are infinitely
divisible (�H6).
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• When studying random processes we will often use the fact of normal
distribution infinite divisibility. In particular, if ε1, ..., εn are independent
Gaussian quantities with zero mean and unit variance εi ∼ N(0, 1), then
their sum is also Gaussian:

ε1 + ...+ εn = ε
√
n. (1.30)

The factor
√
n is extracted for convenience, so that ε ∼ N(0, 1) [ (1.21),

p. 14 ]. As a result, εi and ε have the same distribution with the same
parameters (mean, moments, etc.). The characteristic function for ε satisfies
the equation Φ(q)n = Φ(

√
n q) and is equal to

Φ(q) = e−q
2/2.

In general case a distribution P (x) is called stable if for any n there exist
such constants an and bn that

x1 + ...+ xn = an + bn x, (1.31)

where x1, ..., xn and x have the same distribution P (x). If an = 0, then such
distribution is called strictly stable. The Gauss distribution with the constant
bn =

√
n is strictly stable.

Let us remark that the condition (1.31) restricts the class of acceptable
distributions more strongly than the simple requirement of infinite divisibility.
The reason is that the left and right hand side in the definition (1.31) contain
random variables that have distributions with the same parameters, whereas
it is not necessary for divisibility.

Similarly to the linear scaling (1.29), the following functional equation is
true for the characteristic function of a stable distribution:

Φn(q) = eiqanΦ(bnq). (1.32)

It is not difficult to verify that both Gauss and Cauchy distributions satisfy
this equation. At the same time Gamma distribution, which is infinitely
divisible, is not stable. General functions satisfying (1.32) are called Levy-
Khinchin distributions:

Φ(q) = eıqβ−γ[1+ıθ sign(q) tan(πα/2)] |q|
α

, Φ(q) = eıqβ−γ|q|−ıγθ q ln |q|,

where sign(q) = q/|q| is the sign of q, and 0 < α � 2. In addition, |θ| � 1,
γ � 0. The first distribution is four-parametric. The second one is three-
parametric and appears to be the limit of the first one as α → 1. These
distributions can describe random numbers with “fat tails” (large excesses)
if appropriate parameter values are set. This property is widely used when
modeling the returns of financial instruments.



20 1 Random Events

• Consider n independent random variables x1, ..., xn which have arbitrary
identical distributions. Let us study the properties of the following sum:

u =
x1 + ...+ xn√

n

as n→ ∞. Without loss of generality it can be assumed that 〈xi〉 = 0 as this
is always possible to accomplish with the substitution x → x − 〈x〉. In this
case the mean of u is also equal to zero. As xi are independent, the mean of
u2 is equal to the mean of x2:

〈
u2
〉
=

〈
x21
〉
+ ...+

〈
x2n
〉

n
=
〈
x2
〉
= σ2.

For the identical arbitrary distributed xi with Φ(q) and large n, the charac-
teristic function for u looks as follows:

Φu(q) =

[
Φ

(
q√
n

)]n
=

[
1− σ2

2

q2

n
+ ..

]n
,

where we have used the equation (1.29) and expanded Φ(q/
√
n) into the series

up to the second infinitesimal order. The term proportional to q is equal to
zero as 〈x〉 = 0. By definition, the Euler number is the limit of

ex = (1 + x/n)n as n→ ∞.

Therefore, the characteristic function and distribution for u are tending to
the Gaussian form:

Φu(q) → e−σ
2q2/2. (1.33)

As an exercise (�H7), it would be useful to find the asymmetry and excess
for the characteristic function Φz(q) = Φn(q) for large n.

The result (1.33) is extremely important. It can be formulated in the
following way:

“the distribution of the sum of a large number of independent random
variables tends to the normal distribution”.

For example, if some physical quantity is subjected to external independent
random effects, then in most cases the distribution of its values obeys the
Gauss distribution. A stock price is also subjected to the random back-
ground of supply and demand fluctuations in financial markets. However, its
distribution is not Gaussian. Mainly, this is caused by two reasons: 1) the
correlation of market players activity (as a result of synchronizing informa-
tional channels) and 2) their slow re-evaluation of the stock risk (volatility).
We will get back to these issues in the Chapter 8.
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1.6 Multidimensional Gaussian Distribution∗

• When studying systems of stochastic equations we will often use matrix and
tensor notation. In order to simplify the notation of matrix multiplication
the following two conventions are used:

ηα =

n∑
i=1

Sαi εi = Sαi εi = (S · ε)α. (1.34)

Summation is always implied over the repeated index and the summation sign
is omitted. Above, the index “i” in the second equality is of such kind. The
repeated indexes which are used for summation are called “dummy ”. During
the calculation they can be replaced by any letter that is not otherwise used
in the expression. The third equality in the equation (1.34) is the matrix
form of the same sum. The matrix S = Sαβ and the vector ε = {ε1, ..., εn}
are multiplied without explicit mentioning of indexes and a summation sign.

Consider n independent Gauss random variables, which have zero mean
and unit variance. The mean value of their product

〈
εiεj

〉
is equal to one for

same indexes and to zero for different ones. We will denote such a matrix by
the Kronecker delta:

〈εiεj〉 = δij =

{
1 i = j
0 i �= j.

For example, let us calculate the covariance matrix of random variables ηα:

〈
ηαηβ

〉
= SαiSβj

〈
εiεj

〉
= SαiSβjδij = SαiSβi = SαiS

T
iβ = (SST )αβ . (1.35)

When summing up with Kronecker delta δij , only the terms with i = j
survive in the sum. So, one of the sums (by j) and the Kronecker delta cancel
each other out. Only the summation index i is left. Then the new matrix
STiβ = Sβi with the transposed indexes is introduced. This operation is called
transposition. In the tabular presentation it corresponds to transposition of
the matrix rows and columns.

A matrix S has the inverse one S−1, if the following equation holds:

S · S−1 = S−1 · S = 1,

where 1 = δij is the unit matrix (the Kronecker delta). Thus, it is possible
to write the following for the vector η = (η1, ..., ηn) defined above:

η = S · ε => ε = S−1 · η,

where we multiplied the left and right parts by S−1.
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• Let ε = (ε1, ..., εn) be standard independent Gaussian random variables
εi ∼ N(0, 1), and the quantities η = (η1, ..., ηn) are obtained from them (1.34)
by mixing the coefficients Sαβ . The mean of the product ηαηβ is determined
by the variance matrix (1.35):

Dαβ =
〈
ηαηβ

〉
, D = S · ST ,

which is symmetric: Dαβ = Dβα.
Let us find the moment-generating function for random variables η. To

this end, we introduce the vector b = (b1, ..., bn) and calculate the exponent
mean of the scalar product b · η = b1η1 + ...+ bnηn (there is no sum by n!):

〈
eb·η

〉
=
〈
eb·S·ε

〉
=
〈
ebiSi1ε1

〉 · ... · 〈ebiSinεn
〉
= e

1
2{(biSi1)

2+...+(biSin)
2}.

We have used the independence of quantities εi to split the mean of the
product into the product of means, and the equation (1.11), p. 7. In the
exponent, we have the following matrix expression:

(biSi1)
2 + ...+ (biSin)

2 = biSik bjSjk = bi Sik S
T
kj bj = b · S · ST · b.

Finally, the moment-generating function is:

φ(b) =
〈
eb·η

〉
= e

1
2 b·D·b. (1.36)

Taking the partial derivatives by bα, it is not difficult to find any mean of any
product ηα. Let us verify that the mean

〈
ηαηβ

〉
is equal to Dαβ . Differentiate

the moment-generating function by bα. Considering that b ·D ·b is equal to
biDijbj , we have the following:

∂φ(b)

∂bα
=

1

2
(Dαjbj + biDiα)φ(b) = Dαibi φ(b),

where in the second equality we have used the fact that Dαβ = Dβα. The
second derivative can be found in the same way:

∂2φ(b)

∂bα∂bβ
= Dαβ φ(b) +DαibiDβjbj φ(b).

Assuming b = 0 and considering that

∂2
〈
eb·η

〉
∂bα∂bβ

∣∣∣
b=0

=
〈
ηαηβ

〉
,

we come to the equation Dαβ =
〈
ηαηβ

〉
. As an exercise, we encourage the

reader to verify the following tensor expression:〈
ηαηβηγηk

〉
= DαβDγk +DαγDβk +DαkDβγ .

Thus, the mean of any power of η is fully defined by the variance matrix D.
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• Now let us find the explicit form of the joint probability density for the
quantities η1, ..., ηn. First let us write the probability density for ε1, ..., εn:

P (ε1, ..., εn) = P (ε1) · ... · P (εn) = e−
1
2 (ε21+...+ε

2
n)

(2π)n/2
.

When we make the substitution ηα = Sαβεβ in the integral we must change
the element of the integration volume dnε = dε1...dεn multiplying it by the
Jacobian:

dnη = det

∣∣∣∣∂ηα∂εβ

∣∣∣∣ dnε = (detS) dnε.

As the determinant doesn’t change when the matrix is transposed, D = SST ,
and the determinant of the matrix product is equal to the product of the
determinants, we have detD = (detS)2. Correspondingly:

P (η1, ..., ηn) =
e−

1
2 η·D−1·η

(2π)n/2
√
detD

,

where the substitution ε = S−1 · η is made in the exponent:

ε2 = S−1
iα ηα S

−1
iβ ηβ = ηαS

−1T
αi S

−1
iβ ηβ = η · S−1T · S−1 · η = η · (S · ST )−1 · η

and the property of inverse matrices was also used: (A ·B)−1 = B−1 ·A−1

(see p. 247). As any probability density, P (η1, ..., ηn) is normalized to one.
Thus, it is possible to find the value of the following n-dimensional Gaussian
integral taking into account the expression (1.36) for the moment-generating
function

〈
eb·η

〉
:

∞∫
−∞

eb·η−
1
2η·D−1·η dnη = (2π)n/2

√
detD e

1
2 b·D·b. (1.37)

Until now we worked with mixed quantities with a zero mean:
〈
η
〉
= S·〈ε〉 =

0. It is possible to add some constant vector η̄α to them, which will have the
meaning of the mean values of ηα:

ηα = η̄α + Sαβεβ.

Then the general n-dimensional Gauss distribution will be the following:

P (η1, ..., ηn) =
e−

1
2 (η−η̄)·D−1·(η−η̄)

(2π)n/2
√
detD

,

where ε = S−1·(η−η̄) is substituted into the probability density P (ε1, ..., εn).
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• Consider the case n = 2 as an example. Let us denote the components
of the symmetric matrix Dαβ by three independent constants σ1, σ2 and ρ:

D =

(
σ2
1 ρ σ1σ2

ρ σ1σ2 σ2
2

)
.

It is not difficult to verify that the determinant D is equal to

detD = σ2
1σ

2
2(1− ρ2),

and the matrix inverse to D looks as follows:

D−1 =
1

detD

(
σ2
2 −ρ σ1σ2

−ρ σ1σ2 σ2
1

)
.

As a result, the joint probability density for η1, η2 can be written in the
following way:

P (η1, η2) =
exp{−(x21 − 2ρ x1x2 + x22)/2(1− ρ2)}

2πσ1σ2
√
1− ρ2

,

where xi = (ηi − η̄i)/σi are the relative deviations of ηi from their means η̄i.
The parameters σi are volatilities:

〈
(η1 − η̄1)

2
〉
= D11 = σ2

1 , and ρ is the
correlation coefficient: ρ = 〈x1x2〉.

The matrix D = SST is symmetric, whereas S is not symmetric in general
case. Therefore, D depends on three parameters and S depends on four ones.
Several different matrices S can correspond to the same variance matrix.
Thus, we can write:

S =

(
σ1 cosα σ1 sinα
σ2 sinβ σ2 cosβ

)
,

where ρ = sin(α + β). Therefore, the same correlation coefficient ρ can be
produced by different combinations of angles α and β.

If α = −β, then ρ = 0, and D is diagonal. For σ1 = σ2 = 1 it is a
unit matrix. The matrix S, which satisfies the equation SST = 1, is called
orthogonal.

If α = 0, ρ = sinβ and σ1 = σ2 = 1, then

S =

(
1 0

ρ
√
1− ρ2

)
, D =

(
1 ρ
ρ 1

)
. (1.38)

Such component mixing transforms the independent standard variables
ε1, ε2 ∼ N(0, 1), 〈ε1ε2〉 = 0 into correlated ones, so that η1, η2 ∼ N(0, 1):
{
η1 = ε1
η2 = ρ ε1 +

√
1− ρ2 ε2

=>
〈
η1 · η2

〉
= ρ,

〈
η21
〉
=
〈
η22
〉
= 1.

This allows us, for example, to generate correlated quantities from the un-
correlated ones for computer simulation.
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1.7 Additive Random Walk Model

• The coordinate of a Brownian particle in the water or a price in financial
market x has a completely irregular trajectory. The additive independent
discrete random walk is its simplest description. The four adjectives in the
model name describe the basic process properties.

Suppose that the initial value x = x0. Then x undergoes t = 1, 2, ...
independent random Gaussian changes (“impacts”), each with the volatility
σ. As a result, x turns to be equal to the accumulated sum of such changes:

xt = x0 + σ (ε1 + ...+ εt), (1.39)

where εi ∼ N(0, 1) are Gaussian numbers with zero mean and unit variance.
For now the index t is an integer, but below we will proceed to a continuous
time limit.

It is convenient to introduce the discrete Wiener variable:

Wt = ε1 + ...+ εt = ε
√
t. (1.40)

The second equality above reflects the fact that the sum of t Gaussian num-
bers is equal to another Gaussian number with the volatility

√
t (pp. 13–14).

Random numbers, both with indexes εi, and without them ε, are assumed to
be normalized: 〈ε〉 = 0,

〈
ε2
〉
= 1, i.e. as ε ∼ N(0, 1). The model (1.39) now

looks as follows:

xt = x0 + σWt.

Let us model the following walk with the help of a computer. Starting from
x0 = 0, we generate the random numbers ε1, ε2, ... and build their accu-
mulated sum. Such a trajectory is called a sample trajectory of the random
process (the first figure):
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As the changes εk will be new every time, the trajectories xt = x(t) of the
walk will be different too (see the second figure). Various realizations of the
walk process cross the vertical line t = const at certain values of x. The set
of all these numbers is a random variable.
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So, when talking about the process x(t), we mean that in the given moment
of time, x = x(t) has certain distribution P (x). The distribution might be
different in another moment of time. Thus, the probability density P (x, t),
the mean x̄(t) and volatility σ(t) are functions of time. The dependence of
these characteristics of the random value x on time motivates introduction
of the term “process”.

The volatility of the random walk increases as
√
t. This can be clearly

seen from several realizations of xt in the second figure above. Their “bunch”
widens gradually. As a result, the uncertainty of the future value of xt grows.
We can find xt quite far from the initial value x0 = 0. This is also shown
in the third figure where the probability densities P (x, t) are given. They
“spread” gradually in the course of time. Though the maximum of P (x, t) is
always at x = x0, nevertheless, the coordinate of the Brownian particle (or
the price) might soon be found arbitrary far from its initial value because of
the “spreading” of the probability density.

Random walk trajectories start from a certain initial value x0 = x(t0) in
the moment of time t0. Therefore, when talking about probabilities we mean
the conditional density

P (x0, t0 ⇒ x, t).

For now, the moments of time t0 and t are integers that correspond to the
jump number εk on the next stage.

It is important to understand that xt = x(t) is not a specific sample
trajectory. It comprises the whole set of all trajectories of a random process.
By analogy, a random number x doesn’t represent a specific value. It contains
all possible realizations obeying some distribution P (x). The probability of
getting xt on the t-th step is determined by the probabilities of all changes
εi. Thus, the discrete Wiener process Wt is determined by the probability
density:

P (ε1, ..., εt) = P (ε1) · ... · P (εt),

where the equality shows the mutual independence of all εi. Therefore, Wt

is, in fact, a multidimensional random variable.
Let us pay attention to the meaning of the formula:

ε1 + ...+ εt = ε
√
t.

Assume that we generate t independent Gaussian numbers εi and add them
together. The result will have the same statistical properties as the single
Gaussian number ε with a unit volatility multiplied by the factor

√
t. When

studying the properties of the accumulated sum it is sufficient to use the quan-
tity ε instead of the joint density P (ε1, ..., εt). In particular, if the mean of the
sum of Gaussian numbers is required, its calculation can be simplified by us-
ing only one random number. However, some tricks are necessary if we are
interested in relations between sums obtained in different moments of time.


